
Travel Report

Project DSLpc

09th September, 2008

Travel Details

Destination

University of Minho,
Braga

Date

2th September - 09th September, 2008

Visitors

Tomaž Kosar, University of Maribor (Slovenia)
Matej Črepinšek, University of Maribor (Slovenia)

Travel Purpose

The main purpose for this visit was to startup the project “Program Com-
prehension for Domain Specific Languages”.

Financial Support / Grant

This visit was supported by: GRICES.

1



Travel Report synthesis

Aims & Objectives

The specific objectives for this travel were to define precisely:

• project objectives;

• the tasks; and

• the schedule.

Achievements

All the objectives listed above, were achieved:

• in general, we discussed the basic concepts involved (domain specific
languages and program comprehension) and we agree with the two
main research directions as explained below;

• in particular, we discussed about the experiments on assessing DSL
and GPL according to Cognitive Dimensions Framework (CDF), as it
is also described below;

• as case-studies the following DSLs were suggested: FDL, Graphviz,
LINQ, XAML, JavaFX.

2



Travel Report details

We start the meeting with the presentation of CoRTA paper on Program
Comprehension for Domain Specific Languages aiming at clarifying the main
project objectives and goals. So, we transcribe in the next subsection the
main comments of discussion. We conclude the report with a section on
project tasks and future work.
After that we felt that was relevant to classify DSLs. The next subsection
is devoted to that purpose.
As the first research direction is supported by cognitive dimensions frame-
work, we include another subsection with a short definition of each dimen-
sion.
One of the main outcomes of this working visit was precise the relation
between cognitive dimensions and language usability and comprehension.
The table synthesizing is included in the last subsection.

Comments

We start discussing the presentation Program Comprehension for Domain
Specific Languages:

• Program Comprehension vs Program Understanding (goals are differ-
ent). Usually, program comprehension is related with real applica-
tions and maintaining. Program understanding is related with pro-
gram analysis.

• Slide 5 (Motivation) — To introduce a research project aimed at un-
derstanding how the standard approaches for the comprehension of
GPL can be adapted for the comprehension of DSLs.

Standard approaches could be improved to deal DSLs, this is, add new
concepts related with DSLs.

Who are the users of program comprehension of DSLs? The devel-
opers of the final users of tools. for languages like SQL, spreadsheets
formulas and so on, the final users are the final users.

The main difference between GPL and DSL is that while in GPL a
concept can be expressed in different ways while in DSL it is expressed
only in a way.

We don’t believe that all tools could be applied to DSLs. It depends

3



on domain. For example, debuggers are always applied to GPL, but
in case of DSLs it depends of the purpose of the language.

It is pacific that visualization is useful for PC.

• Slide 8 (Domain Specific Languages) — Languages tailored to specific
application domain that offers to users more appropriate notations
and abstractions. DSLs are more expressive and are easier to use
than GPLs for the domain in question, with gains in productivity and
maintenance costs.

All of us agree with the definition. Level abstraction corresponds, in
this case, with the real world.

Maintenance costs: if we defend that the maintenance costs for DSLs
are lower than for the GPL why build up new tools to maintaining
this languages? Because, it is a step further. This is, if we have tools
to aid at maintenance so it is more one help. It is a crutch.

• Slide 9: add maintenance to the goals.

• Slide 10 (DSLpc Project) — In this project we have the following ob-
jectives: to measure how easier is to understand written in DSLs; to
understand if existing program comprehension approaches are appli-
cable to DSLs; and to allow the enhancement of DSL program com-
prehension by enabling user-centric visualization.

Maybe another new point to add to the goals is to: propose a set of
techniques to improve the program comprehension of DSLs.

In the second point: to understand which one of the existing PC ap-
proaches are applicable to DSLs and how could they be improved.

We should use the first case as basis of the objective, but at the same
time we should study the other 3 points. At final, we should be able
to use the results to verify how they allow to measure how easier is to
understand programs written in DSLs.

• Slide 12 (DSLpc project - how easy is to understand DSL prgs) —
The CDF has been used to assess the usability of visual programming
languages, while no such study exists for DSLs. Our purpose is to
identity the aspects among the CDF that enhanced in the context of
DSL.

The concept of usability is in the sense of if it is easy to learn the
language, to develop a program, and to evolve a program.

4



It was already study the aspects among the CDF applicable to usability
and visualization, but not for maintenance.

Concerning Di (dimension i of CDF) a GPL is good or not; a DSL is
good or not.

We need to study which dimensions are relevant or not to study/analyze
a DSL.

As it does not exist any formal study on advantages of DSLs, our
purpose is to identity the aspects among the CDF that are enhanced
in the context of DSLs.

• Slide 18 (DSLpc Project — PC approaches data Extraction) — In data
extraction: how to define the information to be extracted for each
DSL? Maybe we need to restrict the domain/type of DSLs that we
want to cover. Because there are DSLs that don’t have any associated
grammar.

If a DSL is not supported by a grammar, we need it to change it to
support grammars.

Maybe a classification of DSLs can be useful to determine what kind
of DSLs we will support.

• Slide 30 — Maybe we will need to different traversals to the three; or
maybe more than one traversal.

Maybe we need to allow that evaluation rules are also parameterized.

DSL classification

We can classify them according to its level and purpose:

• Specification Languages (the purpose is to model data or operations).

Examples: JML, UML, BML, LISA specification language (LISAsl),
FDL, make, yacc, lex, AWK, JavaFX, DTD, Dot, XSD, SGML, XML
...

• Programming Languages (the purpose is to produce some actions/results).

Examples: SQL, LINQ, XSLT, XPath, XQuery, PIC...

We call DSPL to Domain Specific Programming Language, a subset of
DSL, and this subset can be compared and related with GPL (General
Purpose Language) with API (Application Program Interface).

5



• Annotation languages (complementary descriptions).

Examples: HTML, XAML, SVG, GML, ASP, JSP ...

Cognitive Dimensions (Definition)

Abstraction Gradient

What are the minimum and maximum levels of abstraction?

In a DSL, all operations have a zero gradient because all operations are at
the same level. In a programming language like the C language it have a
high gradient because we can work at bit level.

Consistency

When some of the language has been learnt, how much of the rest can be
inferred?

Error-proneness

Does the design of the notation induce “careless mistakes”?

Hidden-dependencies

How dependencies among program components are immediately visible?
How dependencies are easy to detect?

Imposed guess-ahead

Do programmers have to make decisions before they have the information
they need?

Progressive evaluation

Can a partially-complete program be executed to obtain feedback on “How
am I doing”?

Role-expressiveness

How each component of a program is related to the whole?

6



Viscosity

How much effort is needed to perform more changes?

Visibility/Juxtaposibility

Is every part of the code simultaneously visible or it is at least possible to
compare any two parts side-by-side at will?
If the code is dispersed, is it at least possible to know in what order to read
it?

Closeness of mapping

How closely does the notation correspond to the problem world?

Diffuseness

How many symbols or how much space does the notation require to produce
a certain result or express a meaning?

Hard mental operations

How much hard mental processing lies at the notation level, rather than at
the semantic level? Are there places where the user needs to resort to fingers
or pencilled annotation to keep track of what’s happening?

Secondary notation and escape from formalism

Can the notation carry extra information by means not related to syntax,
such as layout, color, or other cues?

Cognitive Dimensions vs Language Usability and Comprehen-
sion

First the guidelines where classified according with its influence type: pos-
itive or negative. From the initial 13 guidelines we believe that not all of
them will be tested by experiment.
After that, it was decided to study each one of this guidelines in 4 fields:
how they contribute to learn, to comprehend, to evolve and to develop.

7



In a scale from 0 to 5 we evaluate each of one of this guidelines. Zero means
that have no influence and 5 means direct influence.
The final result is listed in table 1.

Dimension Influence Learn Comprehend Evolve Develop
Closeness of mapping + 3 3 3 3

Viscosity - 0 0 5 5
Hidden dependencies - 1 1 3 3

Hard mental operations - 3 3 2 2
Imposed guess-ahead - 3 3 4 4
Secondary notation + 3 3 3 3

Visibility + 3 3 3 3
Consistency + 4 4 4 4
Diffuseness - 3 3 3 3

Error-proneness - 0 0 3 3
Progressive evaluation + 0 0 2 4

Role expressiveness + 3 3 3 3
Abstraction gradient + 3 3 3 3

Tabela 1: Nice table! It works. Do you agree Marjan?

We decided not to include the development of DSLs in our study because:

• Influence of development environment (both GPL and DSPL environ-
ment can provide comparable tools)

• Our focus is more about comparison of DSPL and GPL learning, un-
derstanding and comprehending programs and basic documentation;

We decide to define a minimum set of different questions to evaluate a DSL.
So, a DSL study will always have as basis these questions.
Questions:

Learn

• Select correct statements — syntax based question;

• Select statements with no sense (unreasonable) — semantic based
question;

• Select valid programs for a given result — meaning based ques-
tion.

8



Comprehend

• Select correct results for a given program — valid paths in result
set;

• Select number of different results produced by a given program
— number of valid paths;

• Select programs with the same result — equivalent classes.

Evolve

• Add a new functionality — expand based question;

• Inhibit a functionality — remove based question;

• Change a functionality — replace based question.

The values in the table 1 should be revised after using the questions above,
and also should be tuned for each domain.

Project tasks

The tasks are:

1. to understand and measure how easy is to handle and comprehend
programs written in DSLs;

2. to adapt and improve Program Comprehension Tools for DSLs pro-
grams.

Outcomes (first task)

1. In which cognitive dimensions DSLs apport an effective gain?

2. Confirmation of the hypothesis that DSLs are easier to use (learn,
develop, evolve) and to comprehend?

3. Identification of the dimensions where comprehension adds are spe-
cially important.

9



Outcomes (second task)

1. Confirmation of the hypothesis that classic approaches for GPLs pro-
gram comprehension can be reused for DSLs;

2. Identification of the approaches and techniques more adequate for
DSLs.

3. Improvement of DSLs program comprehension tools.

Global outcomes

The final goal of the project is the identification of tools (the convenient
approaches) that can be a good answer to implement the adds that we
identify in the first task (item 3).

Future work

Write two papers: one directed to the first research task; and the other one
directed to the second research task.

10


