
LL(k) Parsers

Daniela da Cruz Pedro Rangel Henriques

{danieladacruz,prh}@di.uminho.pt
Departamento de Informática, CCTC

Universidade do Minho

LL(k) - ”Left to right, Leftmost derivation with k lookahead symbols”

An LL parser is called an LL(k) if it is a top-down (predictive) table-driven and iterative parser
and it uses k tokens of lookahead when doing the syntactic analysis of a sentence.
If such a parser exists for a certain grammar and it can parse sentences of this grammar without
backtracking then it is called an LL(k) grammar. Of these grammars, LL(1) grammars, although
fairly restrictive, are very popular because the corresponding LL parsers only need to look at the
next token to make their parsing decisions and this makes the corresponding parsing table of an
amenable size. So we consider, in this document, k=1.

1 LL1 Definitions

Definition 1 (LL(1) Condition) A grammar G = (T,N,S,P) satisfies LL(1) condition if and
only if:

∀A→α1,A→α2 : lookahead(A→ α1)
⋂

lookahead(A→ α2) = ∅

Definition 2 (Lookahead(1)) The Lookahead(1) set of Terminal symbols of a production p ∈ P
is defined in the following way:

lookahead(A→ α) = First(α)
⋃ {

∅ , α 6⇒∗ ε
Follow(A) , α⇒∗ ε

Definition 3 (First(1)) The First(1) set of Terminal symbols of a Terminal , Non-terminal
symbol or a String (a sequence of symbols) is defined follows:

1. First(ε) = ∅

2. First(t) = {t}, t ∈ T

3. First(A) =
⋃

A→βi
First(βi), A ∈ N

4. First(α) = First(X)
⋃ {

∅ , X 6⇒∗ ε
First(α′) , X ⇒∗ ε

, α = Xα′

Definition 4 (Follow(1)) The Follow(1) set of Terminal symbols of a Non-Terminal symbol is
defined by:

Follow(A) =
⋃

Y→αAβ

(First(β)
⋃ {

∅ , β 6⇒∗ ε
Follow(Y ) , β ⇒∗ ε

1



2 Algorithm to construct the table LL(1)

function build PT(α→ Parsing Table)

for t ∈ T
for n ∈ N

α′[n, t]← error
end for

end for

for (A→ β) ∈ P
for t ∈ lookahead(A→ β)

α′[A, t]← (A→ β)
end for

end for

2


