
Comment-based Concept Location over System
Dependency Graphs
Nuno Pereira1, Maria João Varanda Pereira2, and Pedro Rangel
Henriques1

1 Centro de Ciência e Tecnologia da Computação (CCTC)
Departamento de Informática, Universidade do Minho
Braga, Portugal
{nuno.filipe.gomes.pereira,pedrorangelhenriques}@gmail.com

2 Centro de Ciência e Tecnologia da Computação (CCTC)
Departamento de Informática e Comunicações,
Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Abstract
Software maintenance is one of the most expensive phases of software development and under-

standing a program is one of the most important tasks of software maintenance. Before making
the change to the program, software engineers need to find the location, or locations, where the
changes will be made, they need to understand the program. Real applications are huge, some-
times old, were written by other person and it is difficult to find the location of the instructions
related to a specific problem domain concept.

There are various techniques to find these locations minimizing the time spent, but this stage
of software development continues to be one of the most expensive and longer. The concept
location is a crucial task for program understanding.

This paper presents a project whose main objective is to explore and combine two Program
Comprehension techniques: visualization of the system dependency graph and concept location
over source code comments. The idea is to merge both features in order to perform concept
location in system dependency graphs. More than locate a set of hot instructions (based on the
associated comments) it will allow to detect the other instructions (the whole method).

1998 ACM Subject Classification D.2.7 Maintenance

Keywords and phrases program comprehension; concept location; comment analysis; system
dependency graph

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.0

1 Introduction

It is known that the software maintenance task is the most expensive phase of software
development: 80% to 90% of the overall costs [5]. According to [6] we conclude that half
the time spent in software maintenance is used to understand the program code and the
instructions that have to be changed. We are aware that this task would be easier when a
model driven software development is used [10] but this is not the most usual case.

These conclusions are easily understandable because before making the change to the
program, software engineers need to find the location, or locations, where the changes will
be made. These programs tend to be huge, in terms of lines of code and number of files,
are usually written by different software engineers with different visions of the problem and

© Nuno Pereira, Maria João Varanda Pereira and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages Technologies and Applications (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal and Alberto Simões; pp. 0–7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.0
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


N. Pereira, M. J. V. Pereira and P. R. Henriques 1

different forms of thinking. Moreover the variable and method names in the source code may
not be explicit and usually the program does not have good documentation.

There are various techniques to find these locations minimizing the time spent searching
but the most used techniques consists in navigating through the statements dependencies or
search for keywords that can indicate where the concept is implemented.

According to Kernighan and Plauger [7], the best documentation for a program includes
comments; software engineers make a lot (and relevant) comments in the source code [12].
About 19% of the source code are comments. Comments can explain source code in a natural
language connecting the program domain with the problem domain [1]. Aware of that,
software engineers search for certain keywords in the code (related to the change that will
be made) that can indicate the location, or locations, where the software engineer needs to
modify source code.

Static dependency search consists in navigating through the dependencies among elements.
Software engineers usually begin at the main function and follow a specific path in order to
find the desired concept implementation. If the search is not successful, they must backtrack
to the previous point (e.g., class, method or conditional structure) and choose a different
path.

For all these reasons it becomes clear that it is challenging and useful to create a tool
with a friendly interface that allows to perform concept location over a System Dependency
Graph (SDG). The main idea is to visualize a dependency graph (control flow and data
dependencies) and locate the nodes that can be related to a given term.

The term to search usually belongs to the problem domain and the related nodes are
identified through the source code comments associated to each node/statement. To detect
the comments that are related to a given term/concept a tool called Darius is used. Darius,
which was developed in the context of our research group by Freitas [3], is based on natural
language techniques applied to the comment words; it also produces a set of statistics
concerning those comments. The System Dependency Graph is automatically generated from
the software package.

The final objective of the tool, DariusSDG, proposed in this paper, is to decrease the
time spent to locate concepts in source code in order to reduce the cost of maintenance tasks.

The paper will have four more sections. In Section 2 are discussed the area of Program
Comprehension: some concepts, definitions and techniques which are fundamental to this
work. Section 3 describes the tool architecture. The methodology and all the work related
to the construction of the tool will be described in Section 4, which is divided in three
subsections:

Comments Analysis: where Darius will be introduced.
System Dependency Graph (SDG): this subsection will describe in more detail this
technique along with a tool that help building the graph.
Integration: this subsection will describe the proposed DariusSDG that integrates the
tool that builds the SDG with the tool that analyses source code comments (Darius) as
well as other new features.

This document ends in Section 5 where conclusions and future work are described.

2 Contextualization: Program Comprehension

Program Comprehension [13] is a component of Software Engineering discipline whose
principal purpose is to study how software engineers understand programs.

SLATE 2014



2 Comment-based Concept Location over System Dependency Graphs

Every software engineer has its own way to understand a program, to capture information
from the source code [14]. To help him on this task there are several tools that can be used
to explore the source code. The choice depends on the needs of the user: static or dynamic
source code analysis, use of visualizations or textual information to show the results and so
on. Moreover, almost tools are programming language dependent and some of them adopt
invasive approaches that modify the source code with code inspection instructions [2].

Understanding a program depends on the knowledge the software engineers has about
the program that is being analysed, on his experience and on his knowledge about the real
world problem that the program solves. These two concepts, real world problem and how it
is solved in a programming language, are known in Program Comprehension as: Problem
Domain and Program Domain.

We can see Problem Domain as the concepts related to the problem, the relations between
them and how the problem can be solved. For instance, if a teacher needs to manage a
school class there are various concepts related to that problem like students, grades, faults,
summaries and so on. In a similar way there are various tasks to be accomplished like adding
a summary, register the grades of the students, register the information about the students.

Program Domain is concerned with the programming language and with the implement-
ation techniques used to solve the problem in a computer. Taking the example above, we
can say that in Program Domain the concern is what data structures will be used to store
the information (an array?), how the information about the grades will be implemented (as
attribute of the school class or the student?) among others.

The time spent understanding a program also depends on the program that is being
analysed: how it was created, how it is being maintained, in which programming language is
written. The changes that should be implemented also have a strong influence in the effort
and time required for program comprehension. When a software engineer analyses a program
he constructs a Mental Model [14] of the program, which is updated when new information
are collected.

The software engineer needs to know the flow of the program, which methods are called,
by who, what these methods do, the data dependencies and the effect a change may cause.
As said before, programs tend to be huge (many lines of code, many methods and many
files) and it causes to be unworkable the task of knowing all these details about the program
by hand. Every time a change need to be made in the program the software engineer need
to navigate in the methods and discover the location where the change will take place.
This is an enormous waste of time. The System Dependency Graph [8] is a visual artefact,
used by program comprehension researchers, that shows all the static dependencies of a
program in the form of a graph. Software engineers can see the flow of the program and data
dependencies in a very easy and intuitive way.

From the text (comments, variable names, method names, constant Strings) in the program
software engineers can obtain various kinds of semantic information about a program. If
a method is called “return_average_grade” it is almost certain what the method returns.
There are many techniques of Information Retrieval that can be used to retract important
information about a program. The software engineer can search for certain keywords and
the system retrieves this information (associated whit other important information like the
file, the method or the line where the information was located).

It is interesting and makes sense to join these two techniques in one tool: showing
semantic and structural information about a program. This means the Information Retrieval
techniques can be associated to the System Dependency Graph showing concepts that appear
in a certain comment associated with a certain method.



N. Pereira, M. J. V. Pereira and P. R. Henriques 3

3 DariusSDG: Architecture

As mentioned before the objective of DariusSDG, the tool proposed in this paper, is join
two technique of program comprehension reducing the time spent to understand a program.
To achieve this goal DariusSDG will be composed of three main components (that will be
described in more detail in the next section):

Darius: A comment analyser tool
SDG API: A tool to extract flow and data dependency graphs from a program
JGraphX: A tool that can be used to draw graphs
In Figure 1 we can see the diagram that depicts the tool architecture, its structure,

components and connections among them. From this diagram it is possible to understand
the steps that are taken by the tool to build the result, which is the construction of the
System Dependency Graph and the mapping of the extracted information from source code
comments with the nodes of the graph. The tool receives a program as input and uses the
SDG API to build the System Dependency Graph of the program. As mentioned in Figure 1
the SDG is divided in methods allowing to have big programs as input. The input program
will be also analysed by Darius, constructing a list of comments based on Vector Space Model
(VSM) technique. The final result is a conjugation of the outputs of Darius and SDG API in
a form of a graph, using JGraphX.

Figure 1 Architecture of DariusSDG.

4 DariusSDG: Development

This section is divided in three subsections where will be described the tools and the steps
used to build DariusSDG.

4.1 Comments Analysis
Comments in the code are one of the most important source of information about the program.
It is one of the best ways to understand what the software engineer was thinking and how

SLATE 2014



4 Comment-based Concept Location over System Dependency Graphs

the Problem Domain and Program Domain were related. Studies [17, 15] conclude that
programs that have more comments are more easily understandable by software engineers.

To extract and search information in the comments we need to use Information Retrieval
techniques. As we can see in [11], an Information Retrieval System analyses several documents
processing its text with the assistance of some tools like:

Sentence tokenizer Separates the text into sentences.
Word tokenizer Separates the sentences into words.
Stemming Reduce the word to its grammatical root.
Elimination Eliminates words that do not have significance or value.

After the system complete all the tasks the user only needs to insert the query (set of
keywords) to execute. The system perform the same process mentioned before in the query,
to assure consistence, and retrieves a set of documents that satisfy the search ranking them
by relevance.

There are various algorithms designed to rank documents, however in our work we will
be concerned mainly with Vector Space Model [18] (that is used by Darius).

Darius, built by José Luís Freitas, in his master work [3] at our research group, uses
several techniques of Information Retrieval to analyse the various types (inline, singleline,
multiline and Javadoc) of comments presented in the source code.

The lack of available tools that can perform these actions, the quality of the tool and the
fact that José Luís provided its source code were the reasons to choose Darius.

Darius is composed by four main modules: a comment extractor; a statistic calculator;
a word analyser and a concept locator. As mentioned before, Vector Space Model is one
of the most used algorithms to rank documents and it is used by Darius. There are many
algorithms to calculate the weight of a word like the frequency of the word in the document
but the one adopted is the Term Frequency - Inverse Document Frequency.

4.2 System Dependency Graph
The System Dependency Graph [8] is a visual artefact representing the static dependencies of
a program as a graph. The System Dependency Graph (SDG) is composed of two components:
the Control Flow Graph (CFG) and the Data Dependency Graph [4] (DDG).

CFG shows all the dependencies and calls between methods. It shows all the statements
of the program and how they are related. If a statement B is called by a statement A,
statement B is connected to statement A and it is positioned one level above statement A.
Just looking to the CFG, a software engineer can see the flow of the program and discover in
which class, method and statement, he will do the change (when a maintenance is needed).

DDG shows where the variables in the code are changed (variable dependencies). As in
CFG, when a variable is changed in one statement it is connected to that statement showing
that there is a dependency between them.

As mentioned above, when joined, these two graphs form the System Dependency Graph.
A graph where the software engineers can see all the static dependencies and workflow of the
program in a very easy and intuitive way.

In Figure 2 we can see the System Dependency Graph of the source code in Listing 1
(example extracted from [16]).

Creating by hand a SDG for a given program is not an easy task. And despite the fact
that Java is one of the most famous programing language, there is a very small amount of
tools to analyse Java code and build its dependencies (packages, classes, variables, methods),
and an even more small number to build the SDG.



N. Pereira, M. J. V. Pereira and P. R. Henriques 5

Listing 1 Excerpt of a Java program.
public static void main( String [] args) {

int sum = 0, i = 0;
while (i < 11) {

sum = add(sum , i);
}
System .out. println (" sum = " + sum );
System .out. println ("i = " + i);

}

Figure 2 A System Dependency Graph.

The Java System Dependence Graph API [16], as the name indicates, is a tool that
constructs the SDG of a program and provides methods to access it. The tool provides
methods to navigate throw the nodes using algorithms like the Breadth First Search. We
choose this tool because it is simple to use (does not need configurations or databases), it is
open source and after some tests we have confirmed that the tool does what it compromises.

4.3 Integration
As mentioned before, DariusSDG is a combination between tools (Darius, JGraphX and
SDG API). These tools were built independently and not with the purpose of being joined,
therefore there is some adjustments to be made.

As said above, SDG is an important and useful tool due to its graphical representation.
The System Dependence Graph API only offers methods to access the different nodes and
connections between them (edges) in a text representation. On account of that, it is necessary
a tool to build the graphical representation of the SDG. JGraphX [9] is a Java Swing library
that provides functionality for visualisation and interaction with graphs. It offers many
methods to construct the graph, change the colour of the nodes or the edges and can order
the graph in a hierarchical form (which is the typical form of a System Dependency Graph).
By combining these two tools it is possible to build a System Dependency Graph of any Java
program.

As the SDG of a program can be very huge, hindering the work of the software engineer
instead of helping, DariusSDG provides the System Dependency Graph divide by methods.
As we can see in Figure 3 DariusSDG provides a list (on the right) of all methods used by the
program and the name of the class they belong. By clicking on the method the corresponding
part of the System Dependency Graph is shown on the centre of the window.

As mentioned before, DariusSDG show the SDG divided by methods, decreasing the size

SLATE 2014



6 Comment-based Concept Location over System Dependency Graphs

of the graph shown, but, if the method has many instructions and dependencies it can be a
little confuse. DariusSDG has some options to help the software engineer, for example the
Data Dependency edges can be hidden; it is possible zoom in or zoom out in the graph; or
drag the nodes changing its original position.

Figure 3 DariusSDG GUI.

Darius retrieves a list of comments ordered by similarity according to the list of searched
terms. Each comment has associated the comment itself, the file where it is located, the
type of comment (inline, singleline, multiline and Javadoc) and the line after the comment.
We decided to follow the same logic and return the method associated with the comment (if
exists) and the line where the comment start.

When the software engineer searches for terms a list of comments is presented and its
similarity with the searched terms on the left side of the window (see Figure 3). These
comments are ordered by similarity and if the user clicks in one of them DariusSDG shows
the information associated with the comment and the part of the System Dependency Graph
associated with the respective method. The list in the right automatically changes the
selected row to the row that corresponds with the graph that is being shown.

5 Conclusion

As mentioned along this paper, software maintenance is one of the most expensive parts of
software development, and the time spent by software engineers to understand the program
(an compulsory but unproductive phase) is the main reason for that.

Program Comprehension researchers studied and develop many techniques and tools to
decrease the time spent to understand a program, but software maintenance still a very
demanding task. The number of tools found, for the Java programming language, which can
assist software engineers in program comprehension, is small and focused in one technique of
program comprehension.

DariusSDG try to combine two techniques of Program Comprehension that can show
semantic and structural information about a program. DariusSDG also was built to be
easy to use and understand, avoiding even more wasted time, perform concept location over
System Dependency Graph.

In the future the tool will infer the exact instruction associated with the comment. With
this we can emphasize the node of the System Dependency Graph associated with the
comment and the instruction associated. As future work we will also perform tests, with real



N. Pereira, M. J. V. Pereira and P. R. Henriques 7

programs and software engineers, to verify if the time spent using the tool is smaller than
without the tool.

Acknowledgements This work is funded by National Funds through the FCT - Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within
project PEst-OE/EEI/UI0752/2014.

References
1 Ruven E. Brooks. Using a behavioral theory of program comprehension in software en-

gineering. In Maurice V. Wilkes, Laszlo A. Belady, Y. H. Su, Harry Hayman, and Philip
H. Enslow Jr., editors, ICSE, pages 196–201. IEEE Computer Society, 1978.

2 Daniela da Cruz, Mario Béron, Pedro Rangel Henriques, and Maria João Varanda Pereira.
Code inspection approaches for program visualization. Acta Electrotechnica et Informatica,
9(3):32–42, Jul-Sep 2009. ISSN: 1335-8243.

3 José Luís Figueiredo de Freitas. Comment analysis for program comprehension. Master’s
thesis, University of Minho, 2011.

4 Lin Du, Guorong Xiao, and Daming Li. A novel approach to construct object-oriented
system dependence graph and algorithm design. JSW, 7(1):133–140, 2012.

5 L. Erlikh. Leveraging legacy system dollars for e-business. In IT Professional, volume 2.
IEEE Computer Society, 2000.

6 R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study: Report to
our respondents. In Proceedings of GUIDE 48, April 1983.

7 Brian W. Kernighan and P. J. Plauger. The elements of programming style. McGraw-Hill,
second edition edition, 1978.

8 Panos E. Livadas and Theodore Johnson. An optimal algorithm for the construction of the
system dependence graph. Inf. Sci., 125(1-4):99–131, 2000.

9 JGraph Ltd. JGraphX. https://github.com/jgraph/jgraphx, 2014.
10 I. Luković, S. Ristić, S. Aleksic, and A. Popović. An application of the MDSE principles.

In III Workshop on Model Driven Software Engineering (MDSE 2008), 2008.
11 Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to In-

formation Retrieval. Cambridge University Press, 2009.
12 I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality analysis in open

source software development. Information Systems, 12(1):43–60, 2002.
13 Margaret-Anne D. Storey. Theories, methods and tools in program comprehension: Past,

present and future. In IWPC, pages 181–191. IEEE Computer Society, 2005.
14 Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design ele-

ments to support the construction of a mental model during software exploration. Journal
of Systems and Software, 44(3):171–185, 1999.

15 T. Teny. Procedures and comments vs. the Banker’s algorithm. In SIGCSE Bull, pages
44–53, 1985.

16 Chun Yin TONG, Eric Chi Lik LO, and Ming Hay LUK. Java system dependence graph
API. http://www4.comp.polyu.edu.hk/ cscllo/teaching/SDGAPI/, 2010.

17 Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. The effect of modulariz-
ation and comments on program comprehension. In Seymour Jeffrey and Leon G. Stucki,
editors, ICSE, pages 215–223. IEEE Computer Society, 1981.

18 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: towards a static
noninteractive approach to feature location. ACM Trans. Softw. Eng. Methodol., 15(2):195–
226, 2006.

SLATE 2014


	Introduction
	Contextualization: Program Comprehension
	DariusSDG: Architecture
	DariusSDG: Development
	Comments Analysis
	System Dependency Graph
	Integration

	Conclusion

