

Acknowledgments
First of all, I would like to thank my family, especially my mother Nilva,

that raised me and supported me so that I could pursue my academic goals,

always believing in me. Mom, thank you very much for being there with me

when I needed you, even more now. I missed you so much ever since I left

home, but you can be sure that all your e↵orts have helped me to be where

I am today. Thank you very much!

I would also like to thank my brother, Alexandre, who has always been by

my side. In addition to making the role of brother in the best possible way,

always, since graduation, has helped me to solve my academic issues. I wish

one day I can repay all you’ve done for me. You’re a real brother and I thank

you every day for it! This thesis would not have been finished without your

indispensable help. In the most critical moments, you were always by my

side.

To my supervisor and friend, Professor Pedro Rangel Henriques, I would

like to thank you immensely for what you have done for me since I arrived in

Portugal. From the moment I met you, you were like a father to me. Professor

Pedro, thank you very much for everything, for the knowledge transmitted,

for the friendship, and for the concern you have always shown to me. Be

assured that I will mirror myself, both professionally and personally, in you.

Thank you very much.

To Cristiana Araújo, with whom I had the pleasure of working with. There

were many funny moments, conversations and many, many cafes. Cristiana,

thanks for your help. Those were good years of working together.

I would also like to thank Professors José João Almeida and Maria João

Varanda, and the Archivist Mónica Guimarães for the collaborative publica-

tions. Thank you.

To the Department of Informatics, for the reception received during these 4

v

years, especially the employees Helena, Goretti, and Conceição.

To my co-supervisor, Giovani Rubert Librelotto, thank you for the e↵ort

you have made so that I could apply for a PhD in the University of Minho,

Portugal. Your help was crucial for me to get where I am. Thank you.

To Luciana Probst, who was always by my side, even though she was geo-

graphically far away. Lu, thank you very much for the love you have shown

in all these years, supporting me in my academic and professional career.

For understanding my absence for 4 years of our lives. Be assured that this

achieved goal is not only my merit, but yours too, because there were days

and nights that you made me feel better on the worst days. Thank you so

much for being such a special person in my life!

To my friends Lucas Gomes, Carlos Carvalho, Lip, Jonas Gassen, Renato

Preigschadt de Azevedo, Isabela Finamor, Leandro Oliveira Freitas, Greice

Zanini, Bruno Mozzaquatro, Karine Fontana, Walter Priesnitz Filho, Mari-

ane Camargo Priesnitz, Ricardo Ravanello, Tatiana Rehbein, João Marco,

Alice Balbé, Luis Miranda Ramos, Maiara Nascimento, Rafael Teodósio

Pereira and Andriza Saraiva, for the funny moments, and trips around Eu-

rope. Thank you!

Last but not least, I would like to thank my favorite football team, Grêmio

FBPA, by winning so many titles over the years I was away from my beloved

Rio Grande do Sul! There were many commemorative dates. Thank you

Tricolor, Three times Champion of America!!!

vi

Abstract
A good Learning Space (LS) should convey pertinent information to the

visitors at the most adequate time and location to favor their knowledge

acquisition. This statement justifies the relevance of virtual Learning Spaces.

Considering the consolidation of the Internet and the improvement of the in-

teraction, searching, and learning mechanisms, this work proposes a generic

architecture, called CaVa, to create Virtual Learning Spaces building upon

cultural institution documents. More precisely, the proposal is to automati-

cally generate ontology-based virtual learning environments from document

repositories.

Thus, to impart relevant learning materials to the virtual LS, this proposal is

based on using ontologies to represent the fundamental concepts and semantic

relations in a user- and machine-understandable format. These concepts

together with the data (extracted from the real documents) stored in a digital

repository are displayed in a web-based LS that enables the visitors to use

the available features and tools to learn about a specific domain.

According to the approach here discussed, each desired virtual LS must

be specified rigorously through a Domain-Specific Language (DSL), called

CaVaDSL, designed and implemented in this work. Furthermore, a set of

processors (generators) was developed. These generators have the duty, re-

ceiving a CaVaDSL specification as input, of transforming it into several web

scripts to be recognized and rendered by a web browser, producing the final

virtual LS.

Aiming at validating the proposed architecture, three real case studies – (1)

Emigration Documents belonging to Fafe’s Archive; (2) The prosopographi-

cal repository of the Fasti Ecclesiae Portugaliae project; and (3) Collection of

life stories of the Museum of the Person – were used. These real scenarios are

actually relevant as they promote the digital preservation and dissemination

of Cultural Heritage, contributing to human welfare.

vii

Resumo
Um bom Espaço de Aprendizagem (LS – Learning Space) deve transmitir

informações pertinentes aos visitantes no horário e local mais adequados para

favorecer a aquisição de conhecimento. Esta afirmação justifica a relevância

dos Espaços virtuais de Aprendizagem.

Considerando a consolidação da Internet e o aprimoramento dos mecanismos

de interação, busca e aprendizagem, este trabalho propõe uma arquitetura

genérica, denominada CaVa, para a criação de Espaços virtuais de Aprendiza-

gem baseados em documentos de instituições culturais. Mais precisamente, a

proposta é gerar automaticamente ambientes de aprendizagem virtual basea-

dos em ontologias a partir de repositórios de documentos.

Assim, para transmitir materiais de aprendizagem relevantes para o LS vir-

tual, esta proposta é baseada no uso de ontologias para representar os con-

ceitos fundamentais e as relações semânticas em um formato compreenśıvel

pelo usuário e pela máquina. Esses conceitos, juntamente com os dados (ex-

tráıdos dos documentos reais) armazenados em um repositório digital, são

exibidos em um LS baseado na web que permite aos visitantes usarem os

recursos e ferramentas dispońıveis para aprenderem sobre um domı́nio es-

pećıfico.

Cada LS virtual desejado deve ser especificado rigorosamente por meio de

uma Linguagem de Domı́nio Espećıfico (DSL), chamada CaVaDSL, projetada

e implementada neste trabalho. Além disso, um conjunto de processadores

(geradores) foi desenvolvido. Esses geradores têm o dever de receber uma

especificação CaVaDSL como entrada e transformá-la em diversos web scripts

para serem reconhecidos e renderizados por um navegador, produzindo o

LS virtual final. Visando validar a arquitetura proposta, três estudos de

caso reais foram usados. Esses cenários reais são realmente relevantes, pois

promovem a preservação digital e a disseminação do Patrimônio Cultural,

contribuindo para o bem-estar humano.

ix

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 3
1.3 Research Hypothesis . 4
1.4 Document Organization . 4

I State of the Art 7

2 Cultural Heritage 9
2.1 Definition of Cultural Heritage 9
2.2 Types of Cultural Heritage . 11
2.3 Importance of Preserving Cultural Heritage 12

2.3.1 Ways of Preserving Cultural Heritage 13
2.4 Summary . 14

3 Ontologies 15
3.1 Ontology Representation . 17
3.2 Components of an Ontology 18
3.3 Advantages of Using Ontologies 23
3.4 Ontologies for Cultural Heritage 24

3.4.1 CIDOC Conceptual Reference Model Ontology 25
3.5 Summary . 28

4 Domain-Specific Languages (DSLs) 29
4.1 Classifying DSLs . 31
4.2 Life Cycle of DSLs . 32

4.2.1 Phase One: decision 32
4.2.2 Phase Two: analysis 32
4.2.3 Phase Three: design 33
4.2.4 Phase Four : implementation 34

xi

4.2.5 Phase Five: deployment 35
4.3 DSL Design Guidelines . 35
4.4 Advantages and Disadvantages of DSLs 38

4.4.1 Advantages . 39
4.4.2 Disadvantages . 40

4.5 DSLs to generate web applications 40
4.6 Relating ontologies and DSLs 41
4.7 Summary . 42

5 Learning Spaces 43
5.1 Virtual Learning Spaces . 44
5.2 Comparison between Traditional and Virtual Learning Spaces 46

5.2.1 Advantages and Disadvantages of Traditional and Vir-
tual Learning Spaces 47

5.3 Related Projects – Generation of Virtual Learning Spaces . . . 50
5.4 Summary . 51

II CaVa 53

6 CaVa – Proposal 55
6.1 The architecture . 55
6.2 Components of the architecture 57

7 Ontology 61

8 Module A - CaVasettler 65

9 CaVaDSL– Learning Space Specification 71
9.1 CaVaDSL Syntax . 72

10 Module B - CaVaprocessor 79
10.1 CaVagen . 82

11 Module C - CaVarender 93

III Case Studies 97

12 Case Study 1 – Emigration Documents belonging to Fafe’s
Archive 99
12.1 The structure of the emigration documents 101

xii

12.2 bdME, a Database to store the emigration documents 102
12.2.1 Conceptual Model . 103
12.2.2 Logical Model . 105
12.2.3 Physical Model . 105

12.3 SGPE, a DIS to populate the bdME Database 106
12.3.1 Problems found . 116
12.3.2 Summary . 119

12.4 OntoME, an ontology for the emigration domain 120
12.5 Bridging the gap between bdME and OntoME 122

12.5.1 bdME data and OntoME schema 123
12.5.2 bdME2OntoME Mapping 126

12.6 A CaVaDSL specification for the Emigration virtual LS 130
12.7 CaVagen applied to the automatic generation of the Emigration

virtual LS . 134
12.8 Rendering the final Emigration virtual LS with CaVarender . . . 151
12.9 Summary . 155

13 Case Study 2 – The prosopographical repository of the Fasti
Ecclesiae Portugaliae project (Clero Catedralicio) 157
13.1 bdFasti, the Fasti Ecclesiae Portugaliae Project Database . . 158
13.2 OntoFasti, an ontology for the Fasti Ecclesiae Portugaliae

Project . 159
13.3 Mapping between OntoFasti and bdFasti 161
13.4 A CaVaDSL specification for the Fasti Ecclesiae Portugaliae

virtual LS . 162
13.5 CaVagen applied to the automatic generation of the Fasti Ec-

clesiae Portugaliae virtual LS 165
13.6 Summary . 170

14 Case Study 3 – Collection of life stories of MP 173
14.1 The Museum of the Person Assets 174
14.2 OntoMP, an ontology for the Museum of the Person 177
14.3 Data Extraction and Ontology Population (XML2RDF) 181
14.4 A CaVaDSL specification for the Museum of the Person 183
14.5 CaVagen applied to the automatic generation of the Museum

of the Person virtual LS . 188
14.6 Rendering the final Museum of the Person virtual LS with

CaVarender . 196
14.7 Summary . 201

15 Conclusion 203

xiii

15.1 Revisiting objectives and results 204
15.2 Main Contributions and Thesis 206
15.3 Topics of Future Work . 207

Appendices 213

A Generated and used grammars 213
A.1 CaVagrammar . 213
A.2 OBDA Ontop grammar (cavaSPARQL) 216

B Passport Application Form Data 217

C Logical and Physical Model of bdME 221

D Physical Model of bdFasti 225

Bibliography 227

xiv

List of Figures

1.1 Thesis roadmap based on the subjects 6

3.1 The core structure of the standard ontology CIDOC-CRM
(adaptated from [Oldman and Labs, 2014]) 26

6.1 Proposed Architecture of the CaVa Project 56

7.1 A portion of the “Museu Virtual Interativo da Fotografia”
ontology . 63

8.1 Module A of CaVa . 65
8.2 Bridging the gap between the Database Repository and the

Ontology . 66

10.1 Block Diagram of a Compiler 79
10.2 CaVa workflow: from the CaVaDSL Specification to the virtual

LS automatic generation in three steps 81
10.3 CaVastructure processor schema 83
10.4 CaVaqueries and CaVaqueriesTriple processors 86
10.5 CaVarun schema . 89

11.1 Main configuration rendered 94
11.2 MVIF Menu rendered . 94
11.3 Exhibitions list rendered . 95
11.4 Permanent exhibition Room (exhibition1.php) rendered 96
11.5 MVIF footer rendered . 96

12.1 Components with preselected values 108
12.2 Screen to register Emigrants (corresponding to the “identifi-

cacaoEmigrante” model) . 111
12.3 Timeline of the main page of the SGPE 114
12.4 List of Emigrant’s documents 115
12.5 Graphic showing the count of the records in the database . . . 116
12.6 Stack percentage of records 116
12.7 Rendering the correct component (a) and rendering the incor-

rect component (b) . 117
12.8 Correct component (a) and incorrect component (b) 118
12.9 Reduced CRM-Compatible Form instantiation example 121

xv

12.10Example describing the OntoME concepts for the emigrant’s
birth event . 125

12.11Graphical example of the mapping axioms from Listing 12.6 . 129
12.12Concrete instance of the CaVastructure processor schema 135
12.13Concrete instance of the CaVaqueries processor schema 140
12.14Concrete instance of the CaVarun processor schema 145
12.15mainconfig element rendered (the initial LS page) 151
12.16menu element rendered . 152
12.17Exhibitions list accessed through the menu element 152
12.18Exhibitions list accessed through the initial page 153
12.19Exhibition1 content . 154
12.20footer element rendered . 154

13.1 OntoFasti, an ontology for the Fasti Ecclesiae Portugaliae do-
main . 160

13.2 Exhibition Room rendered with labels from rdfs:label . . . 168
13.3 Initial web page of FEP virtual LS 169
13.4 Permanent Exhibition Room list of FEP virtual LS 169

14.1 An instance of OntoMP for Maria Cacheira life story (excerpt)
[Martini et al., 2016a] [Araújo, 2016] 179

14.2 An instance of OntoMP for Maria Cacheira life story (excerpt)
based on CIDOC-CRM / FOAF / DBpedia [Araújo, 2016] . . 180

14.3 Concrete instance of the CaVarun processor schema for the MP
virtual LS . 193

14.4 Initial web page of the Museum of the Person Learning Space 196
14.5 All the exhibitions in the initial web page 197
14.6 Exhibitions list accessed via the menu element 198
14.7 Permanent exhibition room “Projectos e Histórias de Vida” . 199
14.8 Temporary exhibition room “Pessoas e Eventos” 200

C.1 Logical model of the database 222
C.2 Physical model of the bdME 223

D.1 Physical model of bdFasti . 226

xvi

List of Tables

5.1 Comparison between Virtual and Traditional Learning Spaces
(adapted from [Piccoli et al., 2001]) 47

8.1 “Periodo” table . 67
8.2 “Tecnica” table . 67

12.1 “identificacaoEmigrante”, “filiacao”, and “localidade” tables . 123
12.2 Expansion of the mapping axioms to create the SPARQL query142

13.1 “clerocatedralicio” table . 158
13.2 “documentos” table . 159

xvii

List of Acronyms

ABS Anti-lock Braking System

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

AR Augmented Reality

AJAX Asynchronous Javascript and XML

CaVa Criação de Ambientes Virtuais de Aprendizagem

CFG Context Free Grammar

CH Cultural Heritage

COTS Commercial O↵-The-Shelf

CRM Conceptual Reference Model

CRUD Create, Read, Update, and Delete

CSS Cascading Style Sheets

CUP Construction of Useful Parsers

DAO Data Access Object

DC Dublin Core

DDL Data Definition Language

DIS Document (Data) Ingestion System

DSL Domain Specific Language

DTD Document Type Definition

EBA Emergency Braking Assistance

ER Entity-Relationship

FEP Fasti Ecclesiae Portugaliae

FOAF Friend of a Friend

HP Horsepower

HTML HyperText Markup Language

ICOM International Council of Museums

ICH Intangible Cultural Heritage

ICT Information and Communication Technologies

IFML Interaction Flow Modeling Language

IR Intermediate Representation

xix

IRI Internationalized Resource Identifier

ISO International Organization for Standardization

JavaCC Java Compiler Compiler

JDBC Java Database Connectivity

JS JavaScript

JSON JavaScript Object Notation

LS Learning Space

MP Museum of the Person

MVC Model View Controller

MVIF Museu Virtual Interativo da Fotografia

MPD Museu da Pessoa Dataset

OBDA Ontology-Based Data Access

OCR Optical Character Recognition

OWL Ontology Web Language

PATHS Personalised Access to Cultural Heritage Spaces

PHP PHP: Hypertext Preprocessor

PK Primary Key

R2RML RDB to RDF Mapping Language

RDF Resource Description Framework

RDFs RDF Schema

SGPE Sistema Gerenciador de Processos de Emigração

SKOS Simple Knowledge Organization System

SPARQL Simple Protocol and RDF Query Language

SQL Structured Query Language

SQWRL Semantic Query-Enhanced Web Rule Language

THB Turbo High Pressure

UI User Interface

UML Unified Modeling Language

UNESCO United Nations Economic, Social and Cultural Organization

URI Uniform Resource Identifier

URL Uniform Resource Locator

VR Virtual Reality

XML eXtensible Markup Language

XSD XML Schema Definition

xx

YACC Yet Another Compiler Compiler

Yii Yes It Is!

xxi

Chapter 1

Introduction

With the popularization of the Internet, its use in information access be-

came common anywhere, to anyone and in many computing devices, such

as smartphones, tablets, personal computers, etc. Moreover, many ways to

store data in digital format emerged. These storage formats help to improve

the accessibility to the information originally kept in physical documents be-

longing to museums, libraries or similar institutions. This storage is held in

repositories of digital objects. Therefore, having information associated with

digital objects on the Internet, they can be distributed and viewed through

sites which possess features for viewing, interacting and navigating over these

objects.

This context created the opportunity to evolve traditional exhibition spaces,

as reading and show rooms, to virtual spaces on the web in order to enable

new learning approaches.

Traditional Learning Spaces (LS) are physical locations, normally within

schools and universities, exposing objects with information (whether mate-

rial or immaterial things), arranging them in order to convey a message to the

visitor of the Learning Space [Brown, 2005], [Goos, 2006]. These spaces gen-

erally contain groups of people (usually students) debating about a specific

subject and someone (usually a professor) who leads the debate, organizing

1

2 Introduction

behaviors through formal methods of education, to impart knowledge to the

group.

However, most people’s knowledge is not acquired in formal methods of ed-

ucation and learning in a classroom, for example, but during their leisure

time outside the classroom, using their laptop, smartphone or any device to

socialize with other people, as well as snack bars at breakfast, travelling on

a train, in moments of leisure with their family, in a simple walk and also in

visits to museums, libraries and the like [Lomas and Oblinger, 2006]. There-

fore, any physical space that features knowledge sharing can be considered a

Learning Space.

In short, the previously cited features allow a range of people (not only

students) to use these Learning Spaces to generate and acquire knowledge.

Thus, the term e-Learning should not be applied in this context to avoid

misunderstandings, because it is usually used to describe LS just for students

enrolled in distance education, which is not our purpose in this thesis.

Following this thought, a Learning Space is like a website where the infor-

mation is arranged in such a way that the visitor learns with it.

Virtual Learning Spaces, like virtual classrooms, virtual seminars, and virtual

museums, improve learning experience by supporting learning at leisure time,

i.e., at flexible locations and time.

To build these virtual Learning Spaces, data about the desired domain should

be stored in a way that enables it to be processed and displayed to the learner

at a later time in the best possible way.

So, in this work, it is proposed an architecture to automatically build vir-

tual Learning Spaces formally specified in a specially tailored language that

resorts to a domain ontology.

Aiming at validating the proposed architecture, three real case studies – (1)

Emigration Documents belonging to Fafe’s Archive; (2) The prosopographi-

cal repository of the Fasti Eclesiae Portugaliae project; and (3) Collection of

life stories of the Museum of the Person – are presented and described step

1.1 Motivation 3

by step according to the proposed approach.

These real scenarios are actually relevant as they promote the digital preser-

vation of our Cultural Heritage, contributing to human welfare. Storing data

collected from archived documents in a computer is a secure way of preserv-

ing information. As said above, it opens many possibilities of disseminating

the preserved knowledge.

1.1 Motivation

This PhD proposal is a challenging idea di↵erent from all similar projects

found in the literature. It contributes to enrich the learning environment, as

stated at [UNESCO, 1997].

It is important to emphasize that, it is not another work in the area of

e-Learning (actually this work is not concerned with distance education tar-

geted to closed sets of students enrolled in some course) and it is not a new

approach in the area of creating digital versions of traditional museums.

Summing it up, this work is motivated by an unpublished idea of creating

virtual Learning Spaces to impart knowledge of Cultural Heritage.

1.2 Objectives

This doctoral project has the goal of automating the creation of web-based

virtual Learning Spaces using an ontology and a Domain-Specific Language

(DSL). The ontology serves two purposes: first, to give semantics to the

digital object repository; and second; to describe the information that must

be displayed. The DSL allows a detailed description of the desired space.

The specific goals of this PhD research are listed below:

1. Create a formalism (DSL) to rigorously describe virtual Learning Spaces

taking into account the domain ontology;

4 Introduction

2. Develop a mechanism to automatically generate the virtual LS from its

formal specification.

To achieve those objectives, the following tasks were performed:

1. A comprehensive study about each relevant subject of the thesis;

2. A deep research regarding the State of the Art, always seeking to study

related work about the project in question;

3. The design of an architecture that reflects the study addressed;

4. The implementation of all the components included in the proposed

architecture;

5. The validation of the framework implemented using three case stud-

ies (Emigration Documents belonging to Fafe’s Archive; The prosopo-

graphical repository of the Fasti Eclesiae Portugaliae project; and The

collection of life stories of the Museum of the Person).

1.3 Research Hypothesis

The PhD work here reported started from the subsequent Research Hypothe-

sis: it is feasible to automatically create virtual Learning Spaces, as web pages,

based on an ontology — that describes an institutional information reposi-

tory — and on a DSL specification — that defines which concepts should be

exhibited and how they should be placed in the final virtual Learning Space.

1.4 Document Organization

In order to introduce and discuss this PhD work, this document is organized

in three di↵erent parts.

1.4 Document Organization 5

Part I is related to the State of the Art. Chapter 2 introduces and concep-

tualizes the Cultural Heritage term as well as the kinds of Cultural Heritage

that exist and the importance of preserving it.

Chapter 3 presents what an Ontology is and its formal definition as well as its

components. Also, the advantages of using ontologies are presented. Finally,

a brief discussion about the Cultural Heritage ontologies is made, presenting

the CIDOC Conceptual Reference Model (CRM) ontology specific for that

domain.

Domain-Specific Languages (DSL) and their definitions are described in Chap-

ter 4. The life cycle of DSLs and their advantages and disadvantages are

pointed. Also in this chapter, DSLs to generate Web applications are pre-

sented as a part of the related work. To conclude the chapter, a relation

between ontologies and DSLs is made.

To finish the State of the Art, Chapter 5 presents a bibliographic survey about

Learning Spaces, more focused in the virtual ones. This chapter also outlines

a comparison between traditional and virtual Learning Environments1, tak-

ing into consideration a set of parameters found in the literature. Also, some

advantages and disadvantages of these two kinds of LS (traditional and vir-

tual) are characterized. To complete this study, a section describing projects

related to the entire generation of virtual Learning Spaces is presented.

After concluding the literature review, Part II presents the proposal. Chapter

6 describes it, characterizing the components and the whole architecture in

a general way.

Aiming at transmitting knowledge about a particular domain to the end-

users through the virtual Learning Spaces, Chapter 7 presents the ontology

component of CaVa. This element must describe and relate semantic concepts

of a specific domain.

Chapter 8 outlines the initial phase of the project, which is the population

of the domain repository, aiming at having all the data prepared to be used

1 In this thesis, the virtual Learning Environment term is employed as a synonym of
thevirtual Learning Space term.

6 Introduction

in the generation of the virtual Learning Spaces.

The CaVaDSL language is discussed in Chapter 9. This chapter explains the

details about CaVaDSL, as well as its syntax and components.

Chapter 10 details the heart, or core of the CaVa architecture. The main

components of the set of processors (generators) developed to reach the final

virtual LS are described in this chapter.

Chapter 11 describes the configuration and the script files generated by

CaVagen, which aim to render the final virtual LS by the web browser.

Regarding the validation of the proposed architecture (CaVa), Part III de-

scribes all the three case studies in detail. Chapter 12 outlines the Emigra-

tion phenomena in Portugal through the emigration documents belonging to

Fafe’s Archive. Chapter 13 presents the case study related to the prosopo-

graphical repository of the Fasti Eclesiae Portugaliae project. The third case

study, concerning the collection of life stories of the Museum of the Person,

is described in Chapter 14.

Chapter 15 concludes this thesis. This chapter summarizes the work done,

presents all the contributions, and finally, gives the directions for future re-

search.

Figure 1.1 is a roadmap of the thesis, presenting the best options path based

on the subject of each part of the thesis.

Figure 1.1: Thesis roadmap based on the subjects

Part I

State of the Art

7

Chapter 2

Cultural Heritage

This chapter introduces the topic Cultural Heritage from di↵erent viewpoints.

The importance of cultural preservation and ways of preserving are discussed.

The definitions presented in this chapter are selected from di↵erent organi-

zations in distinct periods in order to provide basic reference for the whole

subject.

2.1 Definition of Cultural Heritage

Before defining Cultural Heritage, it is important to have the Curator term

defined. According to the European Frame of reference for museum pro-

fessions, a Curator “is the responsible for the collections in his/her charge”

[Ruge, 2008].

Among the duties that the Curator needs to perform, he/she shall “define and

conduct research projects, attend to the circulation of information and docu-

mentary materials on collections and exhibitions”. In addition, the Curator

“contributes to the designing and organizing of permanent and temporary

exhibitions, publications and activities for the public” [Ruge, 2008]. For this

work, the Curator is the responsible for the organization and specification of

any kind of exhibition rooms.

9

10 Cultural Heritage

To understand what Cultural Heritage is, a good approach is to define the

two concepts (culture and heritage) separately.

In 1871, Edward Burnett Tylor, in his book entitled Primitive Culture: Re-

searches Into the Development of Mythology, Philosophy, Religion, Art, and

Custom, defined culture as “a complex whole which includes knowledge, be-

lief, art, morals, law, custom, and any other capabilities and habits acquired

by man as a member of society.” [Tylor, 1871].

UNESCO defines culture “as the set of distinctive spiritual, material, intel-

lectual and emotional features of society or a social group, that encompasses,

not only art and literature, but lifestyles, ways of living together, value sys-

tems, traditions and beliefs.” [Stenou and Unesco, 2002].

The term heritage can be understood as “our legacy from the past, what we

live with today, and what we pass on to future generations.” [Centre, 2005].

From the definition of culture and heritage, the Cultural Heritage term can

be conceptualized, which is, according to UNESCO, the legacy of physical

artifacts and intangible attributes of a group or society that are inherited

from past generations, maintained in the present and bestowed for the benefit

of future generations [UNESCO, 1989].

According to [Waterton and Watson, 2013], Cultural Heritage is not limited

to material manifestations, such as monuments and objects that have been

preserved over time. This notion also encompasses living expressions and the

traditions that countless groups and communities worldwide have inherited

from their ancestors and transmit to their descendants, in most cases orally.

There is a succinct definition by John Feather about Cultural Heritage that

summarizes the concepts mentioned previously: “it is a human creation in-

tended to inform.” [Gorman and Shep, 2006] [Feather, 2006].

The definition of culture for this work is what the people live, encompassing

the daily life, traditions, attitudes, and norms of the society. Culture changes

according to people experiences, i.e., what each person learns.

2.2 Types of Cultural Heritage 11

The heritage is a patrimony that does not change, because it is what people

inherit, i.e., what come from the past.

However, understanding the concepts of culture and heritage separately en-

ables us to see that they are two concepts that complement each other,

because it is through heritage of a person that can be passed the culture to

another.

The culture of a person comes since birth and goes changing over the lifetime

with new knowledge, often by Cultural Heritage.

2.2 Types of Cultural Heritage

There are many kinds of Cultural Heritage. In this section, Cultural Heritage

is described in accordance with UNESCO, that defines two types – tangible1

and intangible2:

• Tangible: includes buildings and historic places, monuments, artifacts,

etc., which are considered worthy of preservation for the future. This

kind of Cultural Heritage covers objects significant to the archaeology,

architecture, science or technology of a specific culture;

• Intangible: means the practices, representations, expressions, knowl-

edge, skills. This kind of Cultural Heritage covers oral traditions and

expressions, performing arts, social practices, rituals and festive events,

knowledge and practices concerning nature and the universe and tra-

ditional craftsmanship.

Summing it up, the tangible Cultural Heritage is palpable (material things)

and can be movable or immovable, and the intangible Cultural Heritage

(ICH) is impalpable (immaterial things).

1 Available at:
http://www.unesco.org/new/en/cairo/culture/tangible-cultural-heritage/

2 Available at:
http://www.unesco.org/culture/ich/index.php?lg=en&pg=00022#art2

http://www.unesco.org/new/en/cairo/culture/tangible-cultural-heritage/
http://www.unesco.org/culture/ich/index.php?lg=en&pg=00022#art2

12 Cultural Heritage

These two concepts of Cultural Heritage (tangible and intangible) are always

connected. According to Makio Matsuzono, director of National Museum of

Ethinology in Japan, archives, museums, libraries and other physical institu-

tions have been recognized as a place for preserving and exhibiting tangible

objects. However, such objects can never be produced without involving var-

ious intangible cultural resources. If the knowledge is lost, little can be made

and learned from an object that remains, but if an object is lost or has a

limited period of use, people can reproduce the object if they have kept the

necessary knowledge [Matsuzono, 2004].

The tangible is therefore always embedded in the intangible. It is unreason-

able to divide the two forms of heritage [Matsuzono, 2004].

Because of this, the Cultural Heritage shall be preserved. Section 2.3 explains

the importance of preserving Cultural Heritage. To the objectives of this

thesis, the intangible Cultural Heritage shall receive more attention.

2.3 Importance of Preserving Cultural Her-

itage

As mentioned earlier, Cultural Heritage deals with the importance of the

people and the patrimony that have to be passed down to the following

generations. Because of this, the objects, the artifacts, among other types of

Cultural Heritage shall be preserved.

In some regions, due to the rapid social changes, the intangible Cultural

Heritage has been losing its original forms, and in many cases the heritage

has been in danger of extinction. In view of this situation, prompt action is

needed to preserve the intangible Cultural Heritage and to encourage such

activities. Sharing information and having discussions to find e↵ective ways

and means to preserve and promote intangible Cultural Heritage as well as

make concrete programmes in this field are considered to be urgent matters

[ACCU, 1998].

2.3 Importance of Preserving Cultural Heritage 13

The preservation of Cultural Heritage demonstrates recognition of the ne-

cessity of the past and of the things that tell the people’s story. Preserved

objects also validate memories; and the reality of the object draws people in

and gives them a literal way of touching the past3.

In accordance with UNESCO, it is the responsibility of people to preserve,

transmit and leave this legacy to succeeding generations [UNESCO, 1989].

Work to safeguard and promote Cultural Heritage is important to bring

together people, communities and societies [UNESCO, 2013].

Libraries, archives, and museums hold many di↵erent collections in a variety

of media, presenting a vast body of knowledge accumulated over the institu-

tions’ history, and the mission of these institutions is to make their collections

accessible to intended users [Ekwelem et al., 2011].

Therefore, access is just as important as preservation of ICH [Ivey, 2004]. It

means that to get knowledge from something that was preserved it is nec-

essary to have access to the source. An example of this can be something

related to a museum. Imagine how something can be known about the mas-

terpiece called Mona Lisa by Leonardo da Vinci without having access to

the place (Louvre Museum) where it is.

2.3.1 Ways of Preserving Cultural Heritage

The importance of Cultural Heritage makes it important to preserve it in the

best way. The way that cultural inheritance shall be preserved depends on

its type. Special care must be taken since each type of cultural patrimony

has its particularities.

Taking this into account, some ways can be taken for the tangible Cultural

Heritage and others to the intangible. The tangible type includes buildings,

historic places, monuments, among others; while intangible includes repre-

sentations, knowledge, rituals, dancing, among other cultural patrimonies.

3 Available at:
http://www.unesco.org/new/en/cairo/culture/tangible-cultural-heritage/

http://www.unesco.org/new/en/cairo/culture/tangible-cultural-heritage/

14 Cultural Heritage

To exemplify, it can be asked: can a ritual or dance be preserved in a digital

form? Yes, being recorded in a DVD or stored in some video format! but is

this the best way to preserve it? Depends on how it will be used.

As aforementioned in Section 2.3, the importance of preserving the Cultural

Heritage brings the necessity to create social programmes to try to circumvent

the preservation problem [ACCU, 1998].

Concerning this PhD project, working with the intangible type of Cultural

Heritage and with the goal to create virtual Learning Spaces to disseminate

knowledge, the digital way is the best to preserve the cultural inheritance.

2.4 Summary

This chapter conceptualized di↵erent viewpoints of Cultural Heritage. Some

concepts were presented, defining Cultural Heritage as two separated key

concepts that work together, because to pass culture to another person, the

heritage – patrimony, history – is needed.

Besides, this chapter described the types of Cultural Heritage, defining the

palpable (tangible) and the immaterial (intangible) kinds and the crucial

importance of why these two concepts should always be connected.

As Cultural Heritage is an important concept about the people and the pat-

rimony that should be passed on, its preservation e↵ect was also discussed,

showing the ways to preserve it.

The next chapter presents the ontologies, a formal description of concepts

related to a specific domain. So, its definitions, types of representation, com-

ponents, advantages, and domain ontologies for Cultural Heritage context

are presented.

Chapter 3

Ontologies

According to [Gruber, 1993], [Fensel, 2000] and [Gava and Menezes, 2003],

the computer science area defines ontology as a formal and explicit specifica-

tion of a shared conceptualization, where according to [Studer et al., 1998],

conceptualization refers to an abstract model of some phenomenon in the

world which identifies relevant concepts of the phenomenon itself; formal

refers to the fact of the ontology be understood by the machine; and shared

gives the notion that an ontology gets the presented knowledge not only by

a single individual but by a group.

As stated in [Noy and Mcguinness, 2001], an ontology is a formal explicit de-

scription of concepts about a domain (sometimes called classes), properties

of each concept describing the features and attributes of the concept (some-

times called roles or slots), and restrictions on slots (sometimes called role

restrictions or facets).

The use of ontologies in computing has already been studied for several years.

The importance of their use is the ability to represent hierarchies of object

classes (taxonomies) and their relationships [Librelotto et al., 2008a].

Ontologies di↵er from other data models by their concern with concepts and

their relationships, in which the semantics of these relationships is applied

evenly [Librelotto et al., 2008b].

15

16 Ontologies

According to [Noy and Mcguinness, 2001], an ontology defines a common vo-

cabulary for researchers who need to share information in a domain including

machine understandable definitions of basic concepts in the domain and re-

lations among them. Some examples of well-known ontologies are: FOAF1,

a project (ontology) faced to linking people and information using the web;

DBPedia2, a project (ontology) devoted in extract structured content from

Wikipedia3 information; and The Dublin Core (DC)4 project, which is an

ontology for describing generic metadata.

There are some reasons to develop and use an ontology. They can be sum-

marized in five items [Noy and Mcguinness, 2001]:

• To share common understanding of the structure of information among

people or software agents;

• To enable reuse of domain knowledge;

• To make domain assumptions explicit;

• To separate domain knowledge from the operational knowledge;

• To analyze domain knowledge.

The first item on the list above is one of the most common goals in devel-

oping ontologies [Gruber, 1993]. Suppose di↵erent web sites about a same

specific domain. If the web sites share and publish the same ontology, with

the same concepts and classifications (taxonomy), then the computer agents

can educe and put together the information from these di↵erent web sites.

The agents can use this aggregated information to answer user queries, for

example [Noy and Mcguinness, 2001].

One of main reasons behind the ontology research is the second item on the

list above. The reuse of a domain knowledge serves basically to not reinvent

1 http://xmlns.com/foaf/spec/
2 http://wiki.dbpedia.org/
3 https://www.wikipedia.org/
4 http://dublincore.org/

http://xmlns.com/foaf/spec/
http://wiki.dbpedia.org/
https://www.wikipedia.org/
http://dublincore.org/

3.1 Ontology Representation 17

the wheel, i.e., before to create an ontology, a good thing to do is to search if

an ontology about the same domain is already done, published and available

to its reuse.

Taken the reuse of an ontology into account, the domain of this work, which

is the Cultural Heritage presented in Chapter 2, need to be described in

detail. Thus, Section 3.4 presents ontologies for Cultural Heritage, aiming

at describing how ontologies could be involved to enhance information man-

agement and characteristics of ontologies for the Cultural Heritage domain.

Namely, the CIDOC Conceptual Reference Model (CIDOC-CRM) ontology

will be presented.

3.1 Ontology Representation

In order to define and use an ontology, it is necessary a concrete representa-

tion. There are a variety of languages which can be used for this purpose.

They vary in terms of expressiveness. Some of these languages will be de-

scribed in this section.

According to [McGuinness and Harmelen, 2004], an ontology can be repre-

sented in:

• XML (eXtensible Markup Language), which provides a syntax to struc-

tured documents, but has no semantic restriction;

• XML Schema, that is a description to restrict the XML documents

structure; element data types are also defined;

• RDF5 (Resource Description Framework), that is a standard model

for data interchange on the web. This model has objects and relations

between them and provides a simple semantic. Using this simple model,

it allows structured and semi-structured data to be mixed, exposed, and

shared across di↵erent applications;

5 www.w3.org/RDF

www.w3.org/RDF

18 Ontologies

• RDF Schema (RDFs), that provides a data modelling vocabulary for

RDF data. This vocabulary describes properties and classes6;

• OWL (Web Ontology Language)7, which adds more vocabulary for

describing properties and classes, for example, relations between classes

(like disjunction), cardinality, equality, among others.

• SKOS (Simple Knowledge Organization System)8, which provides a

standard, low-cost migration path for porting existing knowledge orga-

nization systems to the Semantic Web. SKOS also provides a lightweight,

intuitive language for developing and sharing new knowledge organiza-

tion systems. It may be used on its own, or in combination with formal

knowledge representation languages such as OWL.

Describing a well-founded ontology by directly manipulating the language

(OWL, RDF, etc.) is not a simple task, but there are many tools (free

and non-free) to help and to assist the developers to create and manipulate

ontologies. Some of these tools are Protégé9, TopBraid Composer10, Neon11,

Apollo12, IsaViz13, among others.

3.2 Components of an Ontology

As stated in [Smith et al., 2004], to describe ontologies, some elements are

needed. The basic elements are classes (concepts), individuals (instances),

properties and relations. Another component of an ontology can be the

axioms.
6 www.w3.org/TR/rdf-schema/#ch_introduction
7 www.w3.org/OWL/
8 https://www.w3.org/TR/skos-reference/
9 Available at: http://protege.stanford.edu/
10 Available at: http:

//www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/
11 Available at: http://neon-toolkit.org/wiki/Main_Page
12 Available at: http://apollo.open.ac.uk/
13 Available at: http://www.w3.org/2001/11/IsaViz/

www.w3.org/TR/rdf-schema/#ch_introduction
www.w3.org/OWL/
https://www.w3.org/TR/skos-reference/
http://protege.stanford.edu/
http://www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/
http://www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/
http://neon-toolkit.org/wiki/Main_Page
http://apollo.open.ac.uk/
http://www.w3.org/2001/11/IsaViz/

3.2 Components of an Ontology 19

Some authors define formally ontologies as a set of tuples [Nguyen et al., 2010],

[Inukai et al., 2007] and [Serra and Girardi, 2011]. These formal definitions

are more common in the area of Computer Science.

In [Nguyen et al., 2010], an ontology O as a 5-tuple O = (T, I, 4, conf,

B) is defined, where:

1. T is a set of types, i.e., T = TC [TR [TMR with TC being the set of

concept types, TR the set of relation types, and TMR the set of meta-

relation types. In short, a concept type is a class of objects (entity), a

relation type is a predicate on concept types and a meta-relation type

is a predicate on relation types and concept types;

2. I is a set of individuals, or instances of a concept, relation and meta-

relation types in T, i.e., I = IC [IR [IMR with IC being the set of

instances of concept types, IR the set of instances of relation types, and

IMR the set of instances of meta-relation types. An individual may be

a person, animal, object, or situation. This means that it is an instance

of a class or type;

3. 4 is the semantic subsumption relation in T, i.e., 4 is a subset of

(TC ⇥ TC) [(TR ⇥ TR) [(TMR ⇥ TMR), representing the specializa-

tion relationship (inheritance) between two concept types, two relation

types or two meta-relation types. For example, Elephant 4 Animal

means that Animal is a generalization of Elephant, or Elephant is a

specialization of Animal ;

4. conf is the conformity function, defining for each individual in I, the

infimum of all concept, relation or meta-relation types that could rep-

resent that individual. For example, conf(Jumbo) = Elephant as Ele-

phant is the infimum of all concept types such as LivingEntity, Ani-

mal, Mammal, etc. that could represent Jumbo. For relation or meta-

relation, conf could be, for instance, conf(isSonOf(Tony, Mickael)) =

isSonOf(Person, Man);

20 Ontologies

5. B is the canonical (model) basis function, defining the usage model

or usage pattern of a relation or meta-relation type. For example,

isDaughterOf(Female, Person) is a relation type linking two arguments

of which the first is the daughter and the second is the parent.

Further, [Serra and Girardi, 2011] defines an ontology O as a 6-tuple O =

(C, H, I, R, P, A), where:

1. C is a set of concepts in the domain;

2. H is a set of taxonomic relations between concepts;

3. I is a set of relationships between classes and instances;

4. R is a set of other relationships;

5. P is a set of properties of classes; and

6. A is a set of axioms.

Most formal definitions of ontologies usually share characteristics, indepen-

dently of the approach. Normally the use of concepts (classes or entities)

is to group individuals (instances) that share properties (relations and liter-

als); the use of instances (individuals) is to group them in classes; the use

of properties (object properties or data type properties) is to define relations

and individuals characteristics.

The basic elements, conforming to [Gruber, 1993], [Noy and Mcguinness, 2001]

and [Smith et al., 2004] are:

• Classes (entities or concepts): a core element of most ontologies. A

group of individuals is represented by a class, which share common

characteristics. They define an object in the real world. For example:

Car, Animal, Vehicle, etc;

3.2 Components of an Ontology 21

• Individuals (instances): the basic unit of an ontology; they are the

things that the ontology describes (members of classes). For example:

BMW i8 (Car), AH-64 Apache (Helicopter), Jumbo – the Elephant

(Animal), etc;

• Properties: the characteristics that classes and individuals may have;

they let us assert general facts about the members of classes and specific

facts about the individuals. A property is a binary relation between

them. There are two kinds of properties:

– Datatype property: a relation between classes, or instances of

classes and RDF literals and XML Schema datatypes. For ex-

ample: BMW i8 is an instance of Car class and has the color

attribute as datatype property with the value blue;

– Object property: a relation between classes, or instances of classes,

and other classes (or instances), i.e., relations between two or more

individuals of same or di↵erent classes. For example: Ross and

Monica are two di↵erent instances of People class and they have

a relation between them to inform that they are siblings. This

relation may be called hasSibling and it is an object property.

This example can be understood as Monica hasSibling Ross.

• Axioms: logical rules relevant to the concerned topic that evidence a

fact. They are the knowledge that is not explicit in the taxonomy of

the ontology and may be inferred. An example of axiom is to assert

that every person has a mother.

Based in the aforementioned works and items, in this PhD research an ontol-

ogy is formally defined as O as a 4-tuple O = (C, I, PdtO, A), in which:

1. C is a set of concepts (classes or entities) of the domain. For example,

Person, Animal, Car, Pizza, etc. Conventionally, the name of a class

usually starts with a capital letter and shall all be either singular or

plural;

22 Ontologies

2. I is a set of instances (individuals) of a class. For example, Renato Por-

taluppi and Zidane are individuals of the Football Coach class; Grêmio

FBPA, FC Porto, and Real Madrid FC are instances of the Football

Team class;

3. PdtO is a set of properties that individuals and classes may have. In

relations, usually their names start with a lowercase. Two types of

properties are identified:

• Pdt is a datatype property, i.e., is the relation between classes, or

instances of classes and atomic values, such as strings, integers,

etc. These data types characterize the classes, or individuals.

For example, the instance Renato Portaluppi of the class Football

Coach has birth in year 1962, i.e., the atomic value 1962 defines

a characteristic (birth) of the individual Renato Portaluppi ;

• PO is a object property, i.e., is a relation between classes, or in-

stances of classes and other classes, or instances. These object

properties include the hierarchical (or taxonomic) and the non-

hierarchical relations. For example: the instance Luan has an ob-

ject property called playsIn related to the instance Grêmio FBPA.

This can be read as Luan playsIn Grêmio FBPA.

4. A is a set of axioms. They hold the knowledge that can be inferred and

that is not clearly detailed in the taxonomy of the ontology, i.e., They

provide consistency to the ontology and are used to infer new knowl-

edge. For instance, if two children have the same mother, then they

are siblings. If the facts Ross hasMother Judy14 and Monica hasMother

Judy14 are described in the ontology, this implies the fact (nonexistent

in the ontology) that the individual Ross hasSibling Monica which is a

symmetric property (relation), i.e., Monica hasSibling Ross.

14
Judy is the same individual (person) to all examples

3.3 Advantages of Using Ontologies 23

3.3 Advantages of Using Ontologies

In the literature, many times the term ontology is linked to the concept

and benefit of the re-use, i.e., the benefit of sharing and using again the

vocabulary described by a domain ontology. However, this is not the only

purpose of using ontologies.

This section presents a list of some benefits of using ontologies (including

the reusability) according to [Uschold and Gruninger, 1996], [Guarino, 1997],

[Uschold and Jasper, 1999] and [McGuinness and Harmelen, 2004]:

• Ontologies provide a vocabulary to the knowledge representation of a

domain. This vocabulary helps the applications that use it to avoid

ambiguous interpretations. For example: if two people are having a

conversation and one says to the other the word seat, he may be talking

about something designed to support a person in a sitting position, as

a chair, for example, as well as about the brand of vehicles Seat. The

interpretation of the word may be assigned to a concept or another; it

depends on the mental condition of the person and the context;

• Ontologies allow knowledge sharing. Thus, if there is an ontology that

adequately models a knowledge domain, it can be shared and used by

developers inside the domain of the ontology. For example: consider

that an ontology exists to describe a domain of restaurants. Since that

ontology is available, many restaurants can make their menu (card) us-

ing the ontology’s vocabulary provided without the necessity of redoing

a restaurant domain analysis;

• An ontology may be used to search serving as metadata or an index

into an information repository;

• Ontologies guide knowledge acquisition;

• Ontologies allow the automation of consistency verification, producing

more reliable systems;

24 Ontologies

• Ontologies in systems development can render maintenance easier. Sys-

tems which are built using explicit ontologies serve to improve software

documentation, which reduces maintenance costs. A nice example is

the application of ontologies to help in program comprehension (the

activity behind maintenance tasks) [Carvalho, 2014].

3.4 Ontologies for Cultural Heritage

This section characterizes the Cultural Heritage domain and presents the

standard CIDOC-CRM ontology specialized in that domain. In that way, it

reinforces the importance of ontologies (Section 3.3) in the context of ICH

preservation (Section 2.3.1).

Cultural Heritage has its history (people, events, places, periods, etc.) and

is related in many ways to the society as archival collections, for instance.

Because semantic richness is a special feature of cultural collections content,

it clearly shows the importance of using ontologies to describe the Cultural

Heritage domain [Nisheva-Pavlova et al., 2008].

Besides this, Cultural Heritage is a promising application domain for seman-

tic web technologies due the semantic richness and heterogeneity of cultural

content [Hyvonen, 2009].

Some ontologies in which the Cultural Heritage domain can be described in

are: ABC [Lagoze and Hunter, 2001], DOLCE [Masolo et al., 2003], CIDOC-

CRM [ICOM/CIDOC, 2015], among others that can be seen in [Doerr, 2009].

Usually, these ontologies are used to facilitate the interoperability between

vocabularies of metadata from distinct domains, but they can also be used

to describe the museums, archives or libraries assets, for example. This PhD

research proves this by using the CIDOC-CRM ontology to describe two of

the case studies of this work.

As reported by [Noy and Mcguinness, 2001] and mentioned earlier in this

chapter, an ontology is a formal explicit description of concepts about a

3.4 Ontologies for Cultural Heritage 25

domain. Considering this, the CIDOC-CRM ontology, that describes the

concepts and relationships used in Cultural Heritage documentation, is used

in this PhD work. CIDOC-CRM ontology is, since 2006, an o�cial standard

(ISO 21127:200615) and will be described in Section 3.4.1.

3.4.1 CIDOC Conceptual Reference Model Ontology

The objective of CIDOC-CRM is to promote a shared understanding of the

Cultural Heritage domain by providing a common and extensible semantic

framework that any Cultural Heritage information can be mapped to. In

this way, it can provide the semantic glue needed to mediate between di↵er-

ent sources of information, such as that published by museums, libraries and

archives [Doerr et al., 2003] [Oldman and Labs, 2014] [ICOM/CIDOC, 2015].

The first thing to know about an ontology is its scope (domain). Thus, those

who want to use it, should know what it covers and what it does not cover.

Following this, the scope of CIDOC-CRM is divided into two types (intended

scope and practical scope) [ICOM/CIDOC, 2015]:

• The intended scope can be understood as all information required for

the scientific documentation of Cultural Heritage collections;

– The term scientific documentation in this context conveys that

the information handled by CIDOC-CRM should be su�cient to

the academic research. This does not exclude the question about

the content presentation to the general public, but emphasizes

that the ontology is intended to supply the information details

corresponding to the level required by professionals of museums,

libraries and archives;

– The term Cultural Heritage collections is intended to cover all

types of material collected and displayed by museums and related

institutions, as defined by ICOM (International Council of Muse-

ums);

15 https://www.iso.org/standard/34424.html

https://www.iso.org/standard/34424.html

26 Ontologies

– The documentation of collections includes the detailed description

of individual items within collections, groups of items and collec-

tions as a whole. CIDOC-CRM is specifically intended to cover

contextual information: the historical, geographical and theoreti-

cal background that gives museum collections much of their cul-

tural significance and value.

• The practical scope of CIDOC-CRM ontology is driven by the concep-

tual reference standards documentation (that has many versions and

the last updated one is the version 6.216 of May 2015). It is used to

guide and validate the CIDOC-CRM development, i.e., the data prop-

erly encoded according to these documentation standards may be a

CIDOC-CRM compatible expression.

In summary, the scope of CIDOC-CRM is the exchange of relevant informa-

tion with libraries, museums, and archives. The necessary information for

the administration and management of cultural institutions, such as infor-

mation related to personnel, accounting and visitor statistics are beyond the

scope of CIDOC-CRM.

To understand the core of the CIDOC-CRM ontology, Figure 3.1 illustrates

it.

Figure 3.1: The core structure of the standard ontology CIDOC-CRM (adap-
tated from [Oldman and Labs, 2014])

Moreover, an explanation of each CIDOC-CRM’s entity (core structure) is

provided:

16 Available at: http://www.cidoc-crm.org/Version/version-6.2

http://www.cidoc-crm.org/Version/version-6.2

3.4 Ontologies for Cultural Heritage 27

• The CIDOC-CRM is event-based. At the core of this event model are

Temporal Entities, i.e., things that have happened in the past;

• As the Temporal Entities are classes related to time, they can have

Time Spans. Actors, Conceptual Objects, Physical Things and Places

can not be directly linked to time. Thus, they must be associated to

an event, i.e., a Temporal Entity ;

• A Place can be anything that describes a location, like a geographical

location or a location defined inside a car or on the top of Mount Fitz

Roy in Argentina/Chile;

• Actors are entities with legal responsibility. An actor can be an indi-

vidual or a group. An individual may be a person and a group may

be a company, for example. Actors interact with things (Conceptual

Objects and Physical Things) through events;

• A Physical Thing is a thing that could be physically destroyed and

transformed (created) into something else preserving parts of it;

• Conceptual Objects can not be destroyed, unless all carriers (a book,

a painting, a computer disk, the human mind, etc.) of them are de-

stroyed. Thus, to destroy a conceptual object, it is needed to destroy

all of its carriers, including people;

• Things in CIDOC-CRM can have names, i.e., Appellations. An appel-

lation is an object title (name), an identification number, etc;

• Di↵erent organizations have di↵erent classification systems. In CIDOC-

CRM, classifications are called Types and they are referred to the clas-

sification of things. For instance wedding, earthquake, skirmish are

types of events.

Furthermore, the CIDOC-CRM ontology has name conventions that should

be followed. Any concept starts its name with the capital letter “E” (meaning

Entity) followed by a numerical code (e.g. E39 Actor, E53 Place, etc.). The

28 Ontologies

relations are no di↵erent, they start their names with the capital letter “P”

(meaning Property) followed by a numerical code (e.g. P89 falls within, P131

is identified by, etc.).

3.5 Summary

This chapter described the definition of ontology, as well as its formal defi-

nition in the Computer Science area.

Thus, to represent an ontology computationally, the use of some languages

are needed. They were listed and explained in order to show some forms in

which ontologies can be described.

The components that belong to an ontology were presented. In addition, the

classes, instances, and relations were depicted.

Furthermore, some advantages of using ontologies were shown, presenting a

list of benefits and showing why ontologies should be used.

Concluding the chapter, an ontology for the Cultural Heritage domain, called

CIDOC-CRM, which is a standard to describe issues on this topic, was pre-

sented.

The next chapter presents the Domain-Specific Language (DSL) concept,

necessary to achieve the main goal of this PhD work. The Domain-Specific

Language definitions, as well as the internal and external DSLs and the

life cycle of them, are described. Also, some pros and cons of its use and

implementation are discussed. Furthermore, some DSLs aiming at generating

web applications are presented.

Chapter 4

Domain-Specific Languages

(DSLs)

Domain-Specific Language (DSL) is an old term defined in general as a

language targeted to solve a specific problem. Its development is hard be-

cause it requires both domain knowledge and language development expertise

[Mernik et al., 2005].

As stated in [Ghosh, 2011], Domain-Specific Languages are designed to settle

problems from a specific area. According to [Deursen et al., 2000], DSLs

are used in Software Engineering in order to enhance quality, flexibility, and

timely delivery of software systems, by taking advantage of specific properties

of a particular application domain.

With an appropriate DSL, complete application programs for a specific do-

main can be developed more quickly and more e↵ectively than with a general-

purpose language [Hudak, 1998].

To make clear what is a DSL and what its purpose is, imagine that you want

to buy a new car, then you go to some car dealership and specify to the

salesman that you wish a car with Anti-lock Braking System (ABS) and the

Emergency Braking Assistance (EBA). Besides, you specify the car should

have a Turbo High Pressure (THB) engine with 165 horsepower (HP) and

29

30 Domain-Specific Languages (DSLs)

six speed automatic sequential transmission plus sport mode and Hill Assist

system. The seller will show you a car model with the features according

to your specification. You do not need to explain each term about the car.

The dealer knows exactly what you have ordered, because you have used the

precise language of that domain, which is shared between the two parts (the

seller and the client). However, to others in a di↵erent context, the terms

might not make sense.

Having the concepts introduced in mind, it is notable the accordance be-

tween the authors about the definition of Domain-Specific Languages. But

to explain in detail what is a DSL, the more elaborated definition of Martin

Fowler in his book entitled “Domain-Specific Languages” [Fowler, 2010] can

be followed. Fowler defines DSL as a “computer programming language of

limited expressiveness focused on a particular domain”. Martin Fowler also

explains that there are four key elements to his definition:

• Computer Programming Language: a DSL structure should be easily

understood by humans, but it should also be readable to be executable

in a computer, i.e., a DSL serves to instruct a computer to do some

task;

• Language Nature: a DSL is a programming language where the expres-

siveness comes not just from individual expressions, but also from a set

of expressions composed together;

• Limited Expressiveness : di↵erently of a general-purpose language that

provides lots of capabilities like supporting several datatypes, control,

and abstraction structures, which is useful, but makes the language

harder to be learned and used, a DSL provides a minimum of features

needed to support its domain, i.e., a DSL has only the necessary fea-

tures. Neither more nor less than it needs to solve the domain problem;

• Domain Focus : to be a worthwhile language, a DSL should have a

particular focus turned to a small domain.

4.1 Classifying DSLs 31

4.1 Classifying DSLs

The most common way to classify DSLs is associated to the form that they

are implemented. As stated in [Fowler, 2010] and [Ghosh, 2011] and classified

by almost all practitioners, DSLs are organized into two main categories:

• Internal DSLs : also known as embedded DSLs because they are im-

plemented as an embedding within a host language (general-purpose

language), i.e., an internal DSL is a valid code in its general-purpose

language written in a syntax that extends the original one. One of the

most popular internal DSLs is Rails1, which is a DSL to develop web

applications and is implemented on top of the Ruby2 language, which is

considered very suitable as a host for internal DSLs. Another example

of DSL that is widely used is the Application Programming Interface

(API) that covers a domain-specific vocabulary of class, method, and

function names that becomes available by object creation and method

invocation to any general-purpose language using the library;

• External DSLs : languages not incorporated in general-purpose lan-

guages, i.e., they do not use the syntax of a host language, but they

can be based in a common language like XML (what often happens),

for instance. This kind of DSL has its own structure with lexical anal-

ysis, parsing techniques, interpretation, compilation, and code genera-

tion. Summing it up, it is a new language built from scratch with its

own syntax and semantics. Examples (divided by domains) are (not

restricted to):

– Queries: SQL (relational databases), SPARQL and SQWRL (on-

tologies), etc;

– Markup Languages: HTML, XML-Schema, OWL, RDF, etc;

– Stylesheet description languages: CSS;

1 See more at: rubyonrails.org
2 See more at: www.ruby-lang.org

rubyonrails.org
www.ruby-lang.org

32 Domain-Specific Languages (DSLs)

– Parser-generator languages: ANTLR, YACC, etc.

4.2 Life Cycle of DSLs

After conceptualizing and classifying DSLs, this section will describe, in ac-

cordance to [Mernik et al., 2005], the five phases3 (decision, analysis, design,

implementation, and deployment) needed to develop a DSL.

4.2.1 Phase One: decision

To start the decision phase, it is necessary to think about making or using an

existing DSL. This decision is a hard task, but it is a necessary step towards

the next stages of the life cycle of DSLs.

Thus, if a domain is known and has a lot of knowledge about it (documenta-

tion and literature review, for example), maybe the creation of a DSL from

scratch is the best choice. Otherwise, if a DSL that describes the domain in

question exists, it becomes clear that reusing it requires less expertise than

developing a new one.

If none of the cases above is what fits best, the general-purpose language

should be taken into account, i.e., if the domain is new and little knowledge

about it is available, it does not make sense to develop a DSL from scratch.

To this case, the best choice is to determine the basic concepts of the area

and try to develop a code base supported with libraries (APIs).

4.2.2 Phase Two: analysis

The goal in this second stage of the life cycle of DSLs is to identify the

problem domain and collect the domain knowledge.

3 These phases are not a sequential process and should be applied in an iterative way.

4.2 Life Cycle of DSLs 33

The analysis phase may have several sources as inputs, such as technical

documents, knowledge provided by domain experts, etc; and the outputs,

although vary, are formed basically of domain-specific terminology and se-

mantics in a more or less abstract form. Usually this phase is done informally,

but with the beginning of the exploration of knowledge representation and

ontology development, the formal methods are potentially useful.

The analysis of a formal domain has as output a domain model, which con-

sists of the scope of the domain, the domain terminology like vocabularies,

ontologies, etc., the characterization of domain concepts and the commonal-

ities and variabilities of domain concepts and their interdependencies.

4.2.3 Phase Three: design

As stated in [Mernik et al., 2005], approaches to designing a DSL can be

defined as the relationship between the DSL and the existing languages and

the formal nature. Thus, a DSL can be composed from scratch or it can be

based on an existing language.

To the first approach (based on an existing language), Mernik recognizes

three di↵erent patterns of design, that are: (1) piggyback that is when an

existing language is partially used; (2) specialization that is when an existing

language is restricted; and (3) extension that is when an existing language

is extended.

In contrast to the first approach, Mernik identifies for the second approach,

two variations: (1) informal that is a DSL specified in natural language with

examples; and (2) formal that is a DSL stated using an available syntactic

or semantic specification method like rules, grammars, regular expressions,

etc.

It is crucial to determine which approach to take into account for the design

of a DSL. As reported by [Mernik et al., 2005], the easiest way to design a

DSL is to base it on an existing language (if the users of it are also pro-

grammers who know the host language). The possible benefits are easier

34 Domain-Specific Languages (DSLs)

implementation and familiarity for users.

4.2.4 Phase Four : implementation

With the design phase done, a proper implementation mechanism should be

chosen. In consonance with [Mernik et al., 2005] and the study carried out

on [Kosar et al., 2008], the existing patterns about DSL implementation can

be characterized in seven items described next.

1. Interpreter — DSL constructs are identified and interpreted using a

standard instructions cycle (fetch-decode-execute). An advantage of

the interpreter over the compiler is the simplicity, control over the

execution environment, and easier extension;

2. Compiler/Application generator — DSL constructs are translated to a

base programming language constructs and library calls. A complete

static analysis can be done on the DSL program/specification;

The disadvantages of compilers and interpreters is the cost of building

them from scratch.

3. Preprocessor — DSL constructs are translated to constructs in an ex-

isting language (the host language). Static analysis is limited to that

done by the host language processor. There are subpatterns like macro

processing that is an expansion of macro definitions; source-to-source

transformation that is when the DSL source code is transformed (trans-

lated) into a host language source code; pipeline where processors suc-

cessively handle sublanguages of a DSL and translate them to the input

language of the next stage; lexical processing where only simple lexical

scanning is required, without complicated tree-based syntax analysis;

4. Embedding — new data types and operators are embedded in an exist-

ing host language. Application libraries are the basic form of embed-

ding;

4.3 DSL Design Guidelines 35

5. Extensible compiler/interpreter —A compiler/interpreter for a general-

purpose language is extended with domain-specific optimization rules

and domain-specific code generation. Interpreters are usually easy to

extend, but compilers are hard to extend unless they were designed

having extension availability;

6. Commercial O↵-The-Shelf (COTS) — Existing tools and notations are

applied to a specific domain;

7. Hybrid — A combination of the above.

4.2.5 Phase Five: deployment

In this phase, the implemented DSLs and applications built with them are

used. Developers and domain experts use the DSLs to specify models. With

one of the above mentioned patterns of implementation, these models are

implemented, i.e., this phase is the stage where the system built through

the models with a pattern implementation of DSLs is deployed and used by

end-users.

In addition to these five phases, [Visser, 2008] yet adds one more stage, which

he calls maintenance, which in turn is the phase where the corrections are

made. Some substantial changes in the software may involve altering the

DSL implementation.

4.3 DSL Design Guidelines

To achieve a better acceptance level among the users of the Domain-Specific

Languages, and aiming at a higher language quality, some guidelines for the

design phase were considered based on [Karsai et al., 2009].

The authors introduce 26 guidelines based on their experiences and in the

literature, aiming at improving the design and the usability of DSLs. Guide-

lines to design a DSL should be followed, but some of them contradict each

36 Domain-Specific Languages (DSLs)

other. Therefore, which should be adopted need to be weighed and balanced

according to the domain of use [Karsai et al., 2009].

Karsai et al., have classified the design guidelines into five main categories:

• Language Purpose – which introduces guidelines for the previous tasks

of the language development phase. This category groups the guidelines

for analyzing the purpose of the language;

• Language Realization – which groups guidelines to help how to imple-

ment the DSL;

• Language Content – which classifies guidelines targeting the elements

of a DSL;

• Concrete Syntax – which establishes guidelines for the external repre-

sentation of a DSL;

• Abstract Syntax – which groups the guidelines for the readable repre-

sentation of a language (internal DSL).

From these 26 guidelines, 17 were selected as important for this doctoral

work4:

• Language Purpose:

– Guideline 1: identify language uses early helps determining the

concepts the language will provide;

– Guideline 2: after guideline 1 is done, it is necessary to ask some

questions to determine who is going to use the language and to

identify the complexity of the language;

– Guideline 3: make the language consistent. As DSLs have a spe-

cific purpose, each feature of the language should support this

purpose;

4 As the DSL proposed in this PhD project is an external language, the “Abstract
Syntax” category is not taken into account.

4.3 DSL Design Guidelines 37

• Language Realization:

– Guideline 4: decide to use graphical or textual representation of

the language. Textual representations generally have a faster de-

velopment and are platform and tool independent;

– Guideline 6: reusing existing language definitions is a good solu-

tion, since adopting the definition of a well-established language

to start the development of a new language is better than building

a DSL from scratch. In this work, the proposed DSL is based on

the JSON definition;

• Language Content:

– Guideline 8: reflect only the necessary domain concepts. A set of

concepts shall be defined, allowing the language user to declare all

the essential domain concepts. This PhD research uses ontologies

as the set of the domain concepts and relations;

– Guideline 9: keep the language simple. The new DSL need to be

as simple as possible. “Simplicity is one of the main targets in

designing languages” [Karsai et al., 2009]. If the language is hard

to understand and use, it will not be adopted;

– Guideline 10: avoid irrelevant generality. This means that the

language should be designed only with what is necessary. In this

work, the ontology (as in guideline 8) controls the generality;

– Guideline 11: limit the number of language components, since

languages with many elements lead to a di�cult understanding;

– Guideline 12: avoid conceptual redundancy. This means that hav-

ing several concepts to describe the same thing allows users to

write it in di↵erent ways, which should be avoided;

– Guideline 13: avoid ine�cient language elements. The generation

of e�cient code is necessary, since it can lead to some problems

like increase of memory usage;

38 Domain-Specific Languages (DSLs)

• Concrete Syntax:

– Guideline 14: existing notations should be adopted. As already

mentioned in guideline 6, the JSON notation is followed in this

work;

– Guideline 15: use descriptive notations. This means that the key-

words should not be di�cult to identify. A good idea is to limit

the number of keywords to easily remember;

– Guideline 16: make elements distinguishable. In textual repre-

sentations, keywords should be placed in certain positions of the

concrete syntax;

– Guideline 20: balance the compactness and comprehensibility of

the notation, without much detail;

– Guideline 21: use the same style in all elements and portions of

the language. For example, if parentheses are used for a purpose,

it is not suitable to use curly brackets for the same purpose in the

language;

– Guideline 22: identify usage conventions. To keep the language

readable and easy to write, a good idea is to follow some conven-

tions. For example, use uppercase or lowercase for identifiers, use

quotation marks for the value of a key-value pair, etc.

These guidelines helped in the design phase of the proposed DSL. When a

language is built from scratch, some guidelines can be adapted more easily

than in the case of having a host language. Furthermore, depending on the

domain, some guidelines may have more relevance than others, so they need

to be weighed in order to know if the guidelines should be followed or not.

4.4 Advantages and Disadvantages of DSLs

Designing and implementing a DSL involves both benefits and disadvan-

tages. Before deciding between implementing a DSL or not, it need to be

4.4 Advantages and Disadvantages of DSLs 39

weighed the pros and cons. This decision should be taken depending on each

applicable circumstance.

Many authors describe the pros and cons based on the programmers and

domain experts viewpoints as well as discriminate some viewpoints based on

the development phase and use of the DSLs. In this section, all these aspects

covered in [Deursen et al., 2000], [Oliveira et al., 2009], [Fowler, 2010] and

[Ghosh, 2011] and the benefits and drawbacks are pointed.

4.4.1 Advantages

The most declared advantage of DSLs is the expressiveness that DSLs have.

It enables DSL programs to be expressed in the level of abstraction of the

problem domain. Thus, domain experts can understand, validate, and even

specify DSL applications.

Because a DSL has a higher level of abstraction, learning and using it is more

accessible than general-purpose languages. Furthermore, with this level of

abstraction, the communication between the developers and domain experts

can improve. This benefit is explained by Martin Fowler in [Fowler, 2010] as

“some people find that trying to describe a domain using a DSL is useful even

if the DSL is never implemented. It can be beneficial just as a platform for

communication”. The author concludes yet that the involvement of domain

experts in a DSL is di�cult, but has a high payo↵ (productivity and better

description of the domain, for instance).

Other advantages that DSLs programs have are self-documenting and suc-

cinctness for several purposes. DSLs also have the benefit of enhancing pro-

ductivity, maintainability, portability, and reliability. Furthermore, DSLs

allow the reuse of the domain knowledge.

Finally, but not less important, is the fact about the development of a DSL

that gives return when the complexity of the domain is high. This is an

important aspect that should be taken into account before deciding to im-

plement and use a DSL.

40 Domain-Specific Languages (DSLs)

4.4.2 Disadvantages

The disadvantages of using a DSL are summarized by the costs of design,

implementation and maintenance phases. Many times, the di�culty of find-

ing the appropriate scope for a DSL and the di�culty of balancing between

domain-specificity and general-purpose are common drawbacks.

Besides this, as stated in [Ghosh, 2011], an external DSL is another language

to learn, i.e., any external DSL has to be learned separately by the developers.

Lastly, according to [Fowler, 2010] and [Ghosh, 2011], the development of a

system normally uses more than one DSL and this makes it harder to un-

derstand what is going on in the project. The conclusion of this is that

DSL composition is not easy, because individual DSLs tend to evolve inde-

pendently of each other. This disadvantage is called by Martin Fowler as a

language cacophony problem.

4.5 DSLs to generate web applications

There are some similar DSLs related to the purpose of this work: MobiDSL

[Kejriwal and Bedekar, 2015], EngenDSL [da Purificação and Silva, 2009],

WebDSL [Visser, 2008], WebML [Stefano Ceri and Matera, 2001], WeSiMoLa

[Stibe and Bicevskis, 2009], among others. The three more interesting are

described next.

In [Kejriwal and Bedekar, 2015], the author developed the MobiDSL lan-

guage, which has the goal of specifying pages/screens to mobile applications,

allowing the programmer to specify page structure, presentation (views),

data retrieval, etc.

In [da Purificação and Silva, 2009], the author developed a DSL called En-

genDSL which aids in developing applications by abstracting user interaction

concepts based on the Interaction Flow Modeling Language (IFML) standard

using the Apache Velocity template engine.

4.6 Relating ontologies and DSLs 41

Another DSL for this purpose is WebDSL described in [Visser, 2008]. WebDSL

is a language for developing dynamic web applications with a rich data model

translating the specification to Java web applications.

These DSLs are languages to create, in an abstract way, web applications

in general. Besides, most of them need expertise in technical tools and pro-

gramming languages to specify the entire web application. The di↵erence of

these works to this one, is that they require expertise in the computer science

area. In this PhD research, a DSL was created with an abstract definition

level that the user does not need to know about data persistence, program-

ming or markup languages. Furthermore, the designed DSL is focused on

the vocabulary of the museum curators, facilitating the specification of the

virtual Learning Space.

4.6 Relating ontologies and DSLs

Parenthetically, the relationship between DSL and ontologies is clear and

necessary to this thesis. As stated in [Kosar et al., 2008], the implementation

phase of DSLs has attracted a lot of research, but the analysis and design

phases (less known and not closely examined) are as important as that.

Knowing the necessity of describing as much precisely as possible the domain,

the analysis phase should be strictly examined. Thus, the knowledge of the

problem domain and its definition is achieved. Therefore, the use of an

ontology is a good way to solve the aforementioned problem because an

ontology provides a vocabulary that represents the objects and concepts of

a precise domain [Ceh et al., 2011].

As stated in [Oliveira, 2009], this relationship between both, ontologies and

DSLs is so strong and relevant that some authors in their works, like [Ceh et al., 2011]

and [Fonseca, 2014] decided to map formally ontologies to (DSL) grammars

and develop tools to automatically generate the grammars for their domain

ontologies. However, this approach is out of the range of our work.

42 Domain-Specific Languages (DSLs)

As mentioned above, the phases of analysis and design of a DSL are im-

portant steps to determine the specific domain to be treated. However, in

this PhD work it is intended to describe the Cultural Heritage domain in an

ontology and relate it with a DSL description with the purpose of describing

the information that must be displayed in the final virtual Learning Spaces.

Thus, the DSL specification shall access the Cultural Heritage ontology to

describe the concepts and relations desired to be shown in the virtual LS.

This relation will be more detailed in Chapter 6.

4.7 Summary

This chapter described the definition of DSLs as a computer programming

language aiming to solve a particular issue. This means that a DSL, with the

minimum needed features, serves to guide a computer to take on a function.

Furthermore, the classification of DSLs associated to the form they are im-

plemented was detailed, showing, on one hand, that the internal ones are also

known as built-in DSLs in a general-purpose programming language. On the

other hand, the external ones are not embedded in host languages using its

syntax, but they can be based in a common language like XML, for example.

The chapter outlined the life cycle of DSLs, presenting its five phases: de-

cision, analysis, design, implementation, and deployment. Besides this, the

pros and cons of designing and implementing a DSL were discussed.

Finally, enclosing the chapter, a relation between ontologies and DSLs was

discussed. This relation between both subjects is important to this PhD

research due to the need that the DSL specification has to have access to the

Cultural Heritage ontology domain to describe the concepts and relations

desired to be presented in the virtual Learning Space.

The next chapter presents the Learning Spaces, showing the definition of the

traditional ones and the virtual ones. Besides, some comparisons, benefits

and drawbacks of them are detailed.

Chapter 5

Learning Spaces

The spread of the Internet and technology has changed the way of reading,

writing, thinking, and learning [Rainie et al., 2010]. Furthermore, according

to [MCEECDYA, 2008], the rapid and continuing advances in information

and communication technologies (ICT) are changing the ways people share,

use, develop and process information and technology.

As a consequence of this, the traditional way of learning is changing. The

facilities to find the desired information nowadays grow up every day due to

the Internet. Thus, the learning environments have also changed.

Traditional Learning Spaces, as mentioned in Chapter 1, are physical loca-

tions where people meet to learn about a specific subject with the aid of a

person (leader), who transmits the knowledge about a specific domain.

The term Learning Space is usually used to describe environments for the

students and professors in schools, universities, or similar educational insti-

tutions. However, this term can be perfectly used to describe the kind of

learning environment that is sought in this work. As mentioned in Chapter

1, the term e-Learning or any subject related to learning management in

educational institutions should not be applied in the context of this doctoral

project. The Learning Spaces described here are concerned with people who

wants to learn by visiting institutions like museums, libraries, and archives,

43

44 Learning Spaces

that hold documents or objects as primary sources of information and so to

transmit knowledge.

Knowing this and already having defined the traditional concept of LS, in

Section 5.1 is defined the new concept of virtual Learning Spaces, which

inherits much of the traditional environments, but is focused on a new way

of learning.

5.1 Virtual Learning Spaces

Faced to the non-formal methods of learning, this section presents the virtual

Learning Spaces focused on cultural institutions like museums, archives, and

libraries.

As previously mentioned in this work, it is hard to explain the virtual Learn-

ing Spaces without refering to the educational LS, because that is the main

domain where they are discussed in the literature. Most of the works are re-

lated to the virtual Learning Environments for students and professors where

the educational scenario has a professor, tutor, or someone to lead and to

impart knowledge to the whole class virtually. This scenario applies to edu-

cational institutions, like schools and universities, o↵ering e-Learning and

distance education. [Jaligama and Liarokapis, 2011], [Piccoli et al., 2001],

[Callaghan et al., 2009], and [Sharma et al., 2015] are some of these works.

In [Moore et al., 2011], the di↵erent terms used to the educational Learning

Spaces are explained.

On the other hand, there are many works in the area of museums and cultural

institutions focused on a 3D virtual tour or digitization of the documents

and objects, like [Jaén et al., 2005], [Sacher et al., 2013], [Hess et al., 2015],

among others. Another area that is being explored is the Virtual Reality

(VR) and Augmented Reality (AR). Some works in this area are

[Madsen and Madsen, 2015], [Hürst et al., 2016], and [Kersten et al., 2017].

In this PhD work, the objective is to create Learning Spaces to the end-users

5.1 Virtual Learning Spaces 45

(the institution “visitors”) without a tutor and unlike the virtual reality en-

vironments, like 3D virtual museums or analogous. So, the end-users should

learn from provided information through non-formal methods, in their leisure

time and in informal occasions and places.

So, the definition and practical applications of Learning Spaces can be useful

both to the educational institutions and to the cultural institutions. The

scope of this PhD work is restricted to the virtual Learning Spaces related

to cultural institutions (museums, archives, and libraries), not dealing with

educational environments like those concerned with distance education.

Thus, in this work, a virtual Learning Space is defined as a LS similar to

a digital library. A digital library, according to [Witten et al., 2009], is a

focused collection of digital objects that can include text, visual material,

video material (stored in electronic media formats), along with means for

organizing, archiving, and retrieving the files and media contained in the

library collection.

Ian Witten adds that digital libraries can be maintained by individuals, or-

ganizations, or a�liated with established physical library buildings or insti-

tutions, or with academic researchers [Witten et al., 2009]. This definition

can be easily adapted to other institutions that also have collections of in-

formation sources to be stored and managed.

Thinking in this way, a book – of a library –, a document – of an archive

–, or an object – of a museum – are similar things that can be stored in

collections. Each one is an information source; that information should be

stored and displayed through the virtual environment so that the end-users

can learn e↵ectively.

Thus, in the context of this doctoral work, the specific definition of a virtual

Learning Space is an environment similar to the traditional one, but without

a person to lead the knowledge transmission; the information to be passed to

the learners is arranged in such a way that the users can learn individually

using the tools and features provided to them by the environment. These

features and tools can be a powerful search mechanism where the information

46 Learning Spaces

displayed is only what the users want. These Learning Spaces and their tools

and features are explained better in Chapter 6.

5.2 Comparison between Traditional and Vir-

tual Learning Spaces

This section describes the di↵erences and makes a comparison between the

traditional and virtual Learning Spaces based in [Piccoli et al., 2001]. In this

work, the study was made relating the traditional and virtual environments

in the educational domain. However, as mentioned before, the Learning

Spaces described in this work can be defined and related in the same way as

the educational ones.

The comparative study of [Piccoli et al., 2001] takes into account the param-

eters Time, Place, Space, Technology, Interaction, and Control. These six

items are described:

• Time: the timing of the instruction, i.e., the control over the pace of

the learning;

• Place: the physical location of instruction;

• Space: the collection of materials and resources available to the learner;

• Technology : the collection of tools used to deliver learning material and

to facilitate communication among participants;

• Interaction: the degree of contact and educational exchange among

learners and between learners and instructors; and

• Control : the pace in which the learner can control the instructional

presentation.

In Table 5.1, there is a comparison between the traditional and virtual envi-

ronments considering these six points.

5.2 Comparison between Traditional and Virtual Learning Spaces 47

Table 5.1: Comparison between Virtual and Traditional Learning Spaces
(adapted from [Piccoli et al., 2001])

Learning Space
Topic Traditional Virtual
Time Visitors have a specific time

to visit the institution de-
pending on open hours

Visitors connect to the vir-
tual (online) Learning Space
when they choose

Place Visitors should go to the
physical institution

Visitors connect to the vir-
tual (online) Learning Space
where they are

Space Visitors share physical space
with others during the open-
ing hours

Visitors do not share the re-
sources

Technology Visitors are limited to use
the technology available in
the physical space only

Visitors use the features and
tools available in the virtual
Learning Space

Interaction Visitors are able to inter-
act face-to-face with other
visitors or contact directly
with any kind of artifacts
and their information

Visitors are able to in-
teract with other people
through asynchronous com-
munication and access any
kind of artifacts and their
information via the tools
and features of the virtual
space

Control Visitors do not have full
control over the pace at
which they access the infor-
mation

Visitors have full control
over the pace in the access
of the information

5.2.1 Advantages and Disadvantages of Traditional and

Virtual Learning Spaces

The advantages and disadvantages pointed in this section are related to the

virtual Learning Spaces in contrast to the traditional ones. This relation is

important because is through the traditional (physical) LS that the virtual

48 Learning Spaces

surfaced.

Considering the topics in Table 5.1, in this section, the parameters are

grouped by similarity to identify the pros and cons about the two kinds

of LS (traditional and virtual).

Thus, among these six items, the first three, called here group (a), are based

on a space-time relation, i.e., the observed parameters time, place, and space

converge to the same pros and cons, because one depends upon the other.

Discussing the pros and cons of group (a), in the traditional LS (e.g. museum)

there are many people sharing the same space, i.e., the same place at the same

time with the same collection (artifacts), which causes a certain discomfort

to the visitors of the LS.

On one hand, the ease of connecting to the Internet to access the information

with the available features and tools of the virtual LS at any time and any

place is a great benefit of the virtual LS over the conventional ones.

On the other hand, there are losses. One of the great benefits of visiting

conventional learning environments is the exchange of knowledge, discussing

and giving opinions about a particular subject with other people, i.e., human

contact. Besides that, the visit to the real object or information in a museum,

for instance, is invaluable. The contact with others and with the books,

sculptures, or any artifacts, brings an incalculable satisfaction and experience

to the visitor, which does not fully happen in the virtual environment.

Still discussing the benefits and drawbacks of the LS, the last three items

(group (b)), technology, interaction, and control, are those related to the way

of using and controlling the pace of the interaction with the artifacts, the

people, and the technology ready to be used in each (virtual and traditional)

LS.

According to Table 5.1, group (b) also has an association with the space-

time, i.e., group (a), because the interaction with people and the use of the

technology are limited to the control of the space and time.

So, the benefit of visiting a traditional LS, from the technology viewpoint,

5.2 Comparison between Traditional and Virtual Learning Spaces 49

is the way of using it to better explore the artifacts in the space and time of

the institution. An example can be described as a visitor in a science and

technology museum, where he can interact with the equipment available only

at the physical location.

In the virtual space, the visitors are restricted to the features and tools of the

LS, which can be a benefit or a disadvantage over the conventional Learning

Environment.

Following this thought, the interaction point has both benefits and disadvan-

tages when the visitor interacts with the artifacts, people, and/or technology

in the same sense of the technology item, i.e., the interaction can be made

in the limitations of time, space, place, and technology in the traditional LS,

and may not have these limitations in the virtual environment.

Finally, the last topic, control, can be defined to the traditional space as a

disadvantage to the visitor, because he does not have full control over the

pace at which he accesses the information, i.e., the control depends, again, of

the time, the space, and the conditions of the place (e.g. easy access (many

people, catering, etc.), disasters (fire, flood, etc.), among others.). In the

virtual space, the visitor has full control over the pace of the access to the

information.

Summing it up, all these benefits and disadvantages are associated to the

group (a), that depends on time, space, and location.

So, the actual advantages and disadvantages must be weighed. To this PhD

research — Learning Spaces built on intangible Cultural Heritage — although

it can be interesting to visit the physical place where the original documents

reside, the essential and most important is the information that the docu-

ments contain. Therefore, it is a fact that the tools and features that the

virtual Learning Spaces provide are more feasible and cosy to access and use.

50 Learning Spaces

5.3 Related Projects – Generation of Virtual

Learning Spaces

Some projects have proposed the creation of virtual Learning Spaces not

just for students as it happens with e-Learning, but for a large range of

people. Some interesting projects exist, more related to this PhD proposal,

in addition to those mentioned in the beginning of this chapter, concerning

the 3D virtual spaces and e-Learning. Here are reported three of them:

• The Domus Naturae Project, which aims at creating a virtual museum

application using tools for managing structured knowledge based on

ontologies [Ghiselli et al., 2005]. This project is similar to CaVa, since

it uses ontologies to describe the repository of digital objects allowing

the navigation over such objects. However, the ontology of CaVa serves

to describe and relate semantic concepts of a specific domain, connects

such concepts with the digital objects stored in the database reposi-

tory, and makes the automatic generation of a virtual LS closer to the

knowledge that the end-user wants to get;

• The Personalised Access to Cultural Heritage Spaces (PATHS1), which

proposes the creation of a system (virtual thematic paths) that acts as

an interactive and personalized tour guide through all objects available

in the European Digital Library (Europeana). The aim of this project

is to make the exploration of Cultural Heritage collections easy for

people, leading them along a pathway that can be created by themselves

or experts. Even though this project is similar to CaVa, the creation

of paths to connect collections of objects is not intended by this PhD

research;

• The MuseumFinland is a semantic portal for publishing heterogeneous

museum collections on the Semantic Web. The system allows making

1 available at: http://paths-project.eu/eng/Prototype

http://paths-project.eu/eng/Prototype

5.4 Summary 51

collections semantically interoperable, and provides the museum visi-

tors with intelligent content-based search and browsing services, thanks

to a set of ontologies. This system uses ontologies to navigate through

meta-information based on a central repository [Hyvönen et al., 2005].

This project is similar to CaVa, however, this PhD work intends to

allow the automatic creation of virtual LS not focused on museums

collections.

In short, the projects presented above regard the area of Learning Spaces as

web-based learning environments for knowledge generation and dissemina-

tion. Compared to the projects here discussed, the main feature that CaVa

will innovate is the automatic generation of virtual Learning Spaces through

a specification (a DSL), based on an ontology that describes and organizes

the information stored in a digital repository.

5.4 Summary

This chapter defined the concepts of Learning Spaces focused on the virtual

ones, but always comparing with the traditional ones, because the virtual, in

this case, is the evolution of the traditional way of learning. In this chapter, it

was defined the term virtual Learning Spaces for this work, keeping in mind

that they are not like 3D spaces, not even for those focused on educational

purposes, but driven to the cultural institutions like museums, libraries, and

archives.

An important topic discussed in this chapter was the comparison between

the traditional and the virtual LS. To this study, it was taken into account

six parameters: time, place, space, technology, interaction, and control. As a

result of this comparison, the advantages and disadvantages of the two kinds

of Learning Spaces (traditional and virtual) were outlined.

The next chapter presents the proposal of this work, depicting the task to

achieve the final virtual Learning Spaces focused on cultural institutions.

Part II

CaVa

53

Chapter 6

CaVa – Proposal

In Chapters 2 to 5 the relevant terms to this work were introduced and

described (definitions and examples were given) to promote a better under-

standing of the scope of the thesis. These concepts will be applied in this

PhD proposal architecture, called CaVa, to achieve the objectives outlined

in Chapter 1. After this preliminary research, the CaVa architecture was

created and designed.

6.1 The architecture

This chapter starts describing the general architecture proposed to build the

CaVa system, as illustrated in Figure 6.1, and then along Section 6.2, each

module will be introduced separately. In addition to the various CaVa mod-

ules, there is a basilar component: the ontology (Chapter 7), that serves to

specify the knowledge domain that corresponds to the institutional informa-

tion repositories. The actual input to CaVa (associated to module B) is the

Learning Space Specification, written in CaVaDSL (Chapter 9), that deter-

mines which concepts should be exhibited and how they should be placed in

the final virtual Learning Spaces by the Curator.

Module A (Chapter 8), that is a kind of back o�ce of this framework, is com-

55

56 CaVa – Proposal

posed of the Database Repository and the Ingestion Function with the aid of

a Document (Data) Ingestion System (DIS) to upload the institution docu-

ments information and data management. Module B (Chapter 10) is made

up of four components that are CaVagen (a specification engine), CaVaDSL

Specification, CaVagrammar and CaVagrammar Processor, which processes the

grammar and generates the specification engine. Module C (Chapter 11) is

composed of the generated LS Scripts, the Web Browser, and the virtual

Learning Space, which is the target of this doctoral project.

Figure 6.1: Proposed Architecture of the CaVa Project

This architecture was not designed for a specific domain. Instead, it shall

support any knowledge domain associated with museums, libraries, archival

or schools. Next, the components and the role of each module of the CaVa

architecture will be detailed.

6.2 Components of the architecture 57

6.2 Components of the architecture

In this section, the requirements of each CaVa architecture’s component are

presented.

Module A – CaVasettler

The objective of CaVasettler is to collect physical documents information from

the institution Documents (the actual input of a DIS) and populate the

digital database repository aiming at displaying the document’s knowledge

in virtual Learning Spaces. These are the components for this module:

• Ingestion Function (Document (Data) Ingestion System - DIS): it is

the software (function) that performs the transport of the documents

data to the database repository to be digitally stored. Basically, it

extracts data from sources, storing the information into digital storage

structures. Usually, this kind of system receives data through Optical

Character Recognition (OCR) or forms that are manually filled;

• Database Repository : it is the digital storage structure that receives

the data extracted (through a DIS) from the physical documents of

organizations. These repositories can be classified as relational, object-

oriented, triple store, etc.

Ontology

To generate the virtual Learning Spaces, which have the objective of impart-

ing knowledge about a specific domain to the end-users, it is necessary to

describe the knowledge implicit in the information contained in the sources

(database repositories). This is the purpose of the ontology in this PhD work.

Depending on the Database Repository type, some extra tasks are needed

(e.g. if the repository is a relational database, it is necessary to do the

58 CaVa – Proposal

mapping between the ontology and the database, aiming at achieving the

database instances).

Module B – CaVaprocessor

CaVaprocessor contains the main components necessary to achieve the objec-

tive outlined in this thesis. CaVaprocessor is the machinery that interprets

the CaVaDSL language specification (the CaVa input, manually written by

the Curator) and uses CaVagen to produce as output, the virtual LS scripts

necessary to render the desired final virtual Learning Space. Remembering

that the input of this module is a specification written in the specific lan-

guage CaVaDSL. To be clear, these specifications are built manually by the

Curator that should have knowledge about (1) the language rules defined

by CaVagrammar, and (2) the main ontology that describes the documents

repository. The components of the CaVaprocessor module are detailed below:

• CaVaDSL: a Domain-Specific Language intended to aid Curators to cre-

ate virtual Learning Spaces based on the museums assets and on the

museological vocabulary;

• CaVagrammar: a set of formal rules defining a formal language to be used

to write sentences that specify a virtual exhibition. Phrases in CaVaDSL

are recognized by the CaVagrammar Processor;

• CaVagrammar Processor : a parser generator and a compiler constructor

that recognizes the CaVagrammar rules and generates CaVagen;

• CaVagen: a set of processors that performs two tasks before creating

the LS Scripts: (1) recognize the CaVaDSL input specification of the

LS, written by the Curator; and (2) access the main ontology to search

for the concepts referred in the specification in order to identify their

instances.

6.2 Components of the architecture 59

Module C – CaVarender

CaVarender is the module responsible for recognizing the LS Scripts generated

by CaVagen and rendering, via a web browser, the virtual Learning Space

described in a CaVaDSL Specification. The components of the CaVarender

module are detailed below:

• LS Scripts : these generated scripts describe the intended virtual LS in

a less abstract level, i.e. they are scripts that configure parts of the LS,

like the static structure and content, dynamic content (queries), and the

webpage presentation style and client-side files. The LS Scripts should

perform two tasks: (1) query the database repository to fetch the real

information concerning the ontological concept instances; and (2) use

this information to create the final virtual Learning Spaces through a

web-browser;

• Web Browser : an application for retrieving and presenting document’s

content (information) in the World Wide Web. In this work, the web

browser has the duty of receiving the LS Scripts generated by CaVagen

and rendering them, presenting the content of the exhibition rooms

with the appropriate style, as described by the CaVaDSL Specification.

The Virtual Learning Spaces, the actual output of CaVa, are the final ren-

dered Web pages that realize the virtual museum, library or archive. They

are a place where the visitor can learn with the content at any time, any

location and any device, without the aid of a tutor transmitting the knowl-

edge.

Along this chapter, it was presented the proposal that supported this PhD

work. The CaVa architecture was presented in a general way, describing the

three main modules, which realize the aim of this project: the automatic

generation of virtual Learning Spaces based on the CaVaDSL Specification

and an ontology.

60 CaVa – Proposal

In addition to the general explanation, a detailed description of each com-

ponent of the CaVa architecture, grouped by the modules, was presented,

aiming at a better understanding of each role.

The “Museu Virtual Interativo da Fotografia1” (MVIF), that was developed

by [Ravanello, 2018], will be used along this thesis to show how the proposed

approach makes it possible to specify the virtual Learning Spaces in CaVa.

MVIF will serve as a running example in the following chapters of II.

1 This is a virtual museum that exposes the techniques, equipments, ideas and
characters of the history of photography. In this work, the idea is not to reproduce
the museum faithfully, but give a little example of the museum description, that is,
how it would be specified in CaVa.

Chapter 7

Ontology

Working with cultural documents belonging to the repositories of archives or

museums, aiming at transmitting the knowledge implicit in those documents

to the public, is not a trivial task. To be successful, it is crucial to describe

the knowledge contained in those documents.

To this work, it is important that the Curator, who holds the organization

assets (documents) to exhibit to the public in virtual Learning Spaces, has

the access to the documental information in an easy way. A good approach

to achieve this is to describe the documents content in an abstract level, for

example, through an ontology, which describes a particular domain with a

specific vocabulary shared by all the community.

So the main objective of the ontology included in the CaVa platform, is to

serve as a high abstraction level description of the documents content. As

already mentioned in Chapter 1 (Section 1.2), the ontology has two purposes:

(1) to give semantics to the database repository; and (2) to describe the

information that must be displayed in the final virtual LS.

In addition to the mentioned advantages of using ontologies (Chapter 3 –

Section 3.3) in this work, the ontology also accomplishes the important task

of serving as a domain vocabulary specification to access the documents

information stored in the digital repository. This is true, since there is no

61

62 Ontology

place in a relational database structure to capture, for example, business

rules, create subsumption relationships and describe other key aspects of a

conceptual model. Below, three reasons are outlined to justify the use of

ontologies to access the sources instead of directly using the database:

• To define a standard vocabulary to describe a specific domain;

• To work with a large amount of data. According to

[Rodŕıguez-Muro et al., 2013], an ontology defines a high-level global

schema and provides a vocabulary for user queries. This isolates the

end-user from the structure and data source details. Using a system

that facilitates access to the database through ontologies is ideal, for

example the Ontology-based Data Access (OBDA)1, that transforms

user queries into data vocabularies and then delegates the evaluation

of the current query to the data sources;

• To group data under abstract concepts. An ontology organizes the in-

formation stored in a database, XML files, or any data source (compu-

tational structure), in a conceptual way, creating groups of restrictions

over this information [Franconi, 2008].

To reproduce the “Museu Virtual Interativo da Fotografia” in CaVa, it is

necessary to describe the context domain in which MVIF is enclosed. So,

a portion of an ontology describing the MVIF museum will be presented.

Figure 7.1 shows the two main concepts related to the MVIF domain, and

four subclasses related with them.
1 This is not needed in case of the database repository be a triple store.

63

Figure 7.1: A portion of the “Museu Virtual Interativo da Fotografia” ontol-
ogy

The ontology describing the domain of the running example contains: con-

cepts like “Technique”, and “Period” and subclasses of “Period” like “Pre-

Photography”, “Chemical Photography”, “Analog Photography, and “Digi-

tal Photography”; relations2 like “has period”, and “is a” (that defines the

“subclass of” object property); and datatype properties like “has name”,

“has decade”, “has description”, and “has per” describing the attributes in

the small circles (n), (d), (de), and (p), respectively (Figure 7.1).

So, to leave the user of CaVa free to use databases of any kind on any brand,

a high-level abstraction layer over the database repository is needed, and the

ontology plays that role.

2 The inverse relations were not taken into account for the running example for the
sake of simplicity

Chapter 8

Module A - CaVasettler

The initial part of CaVa, shown in Figure 8.1, is defined by linking the

Institution Documents and the Ingestion Function — DIS — for the purpose

of collecting the documents (source) to be displayed in the final virtual LS.

Figure 8.1: Module A of CaVa

The first important task to do in CaVa is access the sources, represented in

Figure 8.1 by number (1), via a DIS, which, in turn is an application to aid and

to intermediate the upload of the institution documents data into a database

repository (relational, triple store, object oriented, etc.), represented by the

edge (2). A DIS application can be any kind of system (e.g., a script, a

web application, etc.) that performs that role (2). The database schema

has the goal of storing the information extracted from the sources (archives,

museums, libraries, etc.) through a DIS.

Notice that if the institution that retains the cultural documents already

possess a Database Repository, this phase could be ignored.

65

66 Module A - CaVasettler

After the population phase (Figure 8.1) is concluded, the ontology should be

connected to the database repository to describe and relate semantic con-

cepts of that specific domain, achieving its objective in this PhD research.

Figure 8.2 depicts the mapping phase of the CaVa architecture. Notice that

the mapping step, between the Database Repository and the Ontology, is

optional, depending on the database type.

Figure 8.2: Bridging the gap between the Database Repository and the On-
tology

To relate the semantic concepts of a particular ontology domain to the

database repository, it is necessary to find out the type of the database. The

mapping between the database and the ontology has the purpose of creating

a pavement to establish a connection to query the repository based on the

abstract level that the ontology’s vocabulary provides. On one hand, if the

digital repository is a triple store, it is already prepared to be queried via an

ontology query language (e.g., SPARQL, SQWRL, etc.). On the other hand,

if the database repository is a relational database or another kind of digital

storage schema, it is necessary to link the ontology concepts and relations to

the structure of that database. For example, if an object-oriented database

is used, then it is necessary to map the classes and properties of the ontology

to the classes and objects of the database. An approach to perform this kind

of mapping is explained in [Bartalos and Bieliková, 2007].

If the database repository is a relational schema (most used nowadays), then

the mapping between the ontology and the database should specify targets

and sources. It means that the target (path on the ontology) needs to be

specified to find the instances in that source (path on the database). Re-

gardless of the database type used, the mapping phase allows the end-user

67

(Curator), to query the database repository through the ontology, leaving

him/her more comfortable to work with abstract concepts, without the need

to know the storage structure.

Some research has been done in this area, and the most known and used

is R2RML[Das et al., 2012], a language for expressing customized mappings

from relational databases to Resource Description Framework (RDF) datasets.

Some frameworks have implemented the R2RML language, aiming at facili-

tating the use of the language through tools (e.g., Ontop1, which is a platform

to query databases as virtual graphs using SPARQL).

Continuing the running example about the “Museu Virtual Interativo da Fo-

tografia”, a relational database, called MVIF, was built. For this work, only

a part of the database repository is shown, containing the tables “Periodo”,

and “Tecnica”. A sample of the data contained in MVIF is shown in Tables

8.1 (“Periodo”) and 8.2 (“Tecnica”).

Table 8.1: “Periodo” table

Periodo

id per per

1 Peŕıodo Pré-fotográfico
2 Peŕıodo da fotografia Qúımica
3 Peŕıodo da fotografia Analógica
4 Peŕıodo da fotografia Digital

Table 8.2: “Tecnica” table

Tecnica

id cat cat decada desc id periodo

1 Desenhos
Fotogênicos

1830 Willian Henry ... 2

2 Daguerreótipo 1830 O Daguerreótipo ... 2
3 Fotografia com

luz natural
1830 No ińıcio da foto ... 2

4 Longa Exposição 1830 Antes de ser uma ... 2
5 Positivo Direto 1830 O positivo direto ... 2
...
12 Bokeh 1920 O Bokeh é a forma ... 3
...

1 accessible at: http://ontop.inf.unibz.it/

http://ontop.inf.unibz.it/

68 Module A - CaVasettler

Having the MVIF database and ontology (Chapter 7) presented, to relate

the semantic concepts of the ontology and the relational database structure,

with the purpose of creating a pavement to establish a connection to query

the repository (represented by the data of Tables 8.1 and 8.2) based on

the abstract level that the ontology’s vocabulary provides, it is necessary a

mapping between the two. For this purpose, Listing 8.1 shows a snippet of

the mapping collection2.

Listing 8.1: OBDA mapping file fragment – “mvif.obda”
1 [MappingDeclaration] @Collection [[

2

3 mappingId Technique

4 target :URI/Technique#{id cat} a :Technique ;

5 :has period :URI/Period#{id per} ;

6 :has name {cat} ;

7 :has decade {decada} ;

8 :has description {desc} .

9 source SELECT id cat, id periodo as id per, cat, decada, desc FROM Tecnica, Periodo

10 WHERE Tecnica.id periodo = Periodo.id per

11

12 mappingId Period

13 target :URI/Period#{id per} a :Period ;

14 :has per {per} .

15 source SELECT id per, per FROM Periodo

16

17 //other mapping rules ...

18]]

The mapping collection of Listing 8.1 describes three ontological concepts

of the running example. The first one is the “Technique” concept; accord-

ing to the target statement, it encloses four relations (namely “has period”,

“has name”, “has decade”, and “has description”) and three attributes: “cat”

corresponding to the property “has name”, “decada” related to the property

“has decade”, and “desc” associated to the property “has description”. The

statement source (that actually realizes the mapping) is the SQL (Structured

Query Language) command for querying the relational database retrieving

the instances of “id cat”, “id periodo”, “cat”, “decada”, and “desc” fields

from “Tecnica” table. Notice that the fields being selected in the SQL query

are related to the placeholders3 on the target clause.

2 Notice that the mappings written for this running example were done with the aid
of the Ontop framework based on OBDA axioms

3 Placeholders (annotated as curly brackets {}) can be related to a literal (when it is
only embraced with the curly brackets) or a relation (when it follows a pattern –

69

The second one is the “Period” concept, which, according to the target

statement, contains only one attribute “per”, corresponding to the property

“has per”. The statement source is the SQL query to get the set of instances

for the “id per”, and “per” fields from the “Periodo” database table. The

third mapping is related to the “Pre Photography” concept, a subclass of

the “Period” class.

After explaining the role of the components of CaVasettler based on a rela-

tional database, imagine now that instead of having a relational schema, the

database repository is a triple store. The di↵erence is that in turtle (Listing

8.2), instead of placeholders, the literal value is embedded in the triples, the

mapping to query the database not being necessary, because the data is al-

ready described in the same language as the ontology. Listing 8.2 presents

the triples (in turtle syntax) generated for the running example.

Listing 8.2: Turtle triples file fragment
1 :Technique#1 a :Technique ;

2 :has period :Period#2 ;

3 :has name :"Desenhos Fotogênicos"^^xsd:string ;

4 :has decade 1830 ;

5 :has description :"Willian Henry ..."^^xsd:string ;

6

7 :Period#2 a :Period ;

8 :has per :"Perı́odo da fotografia Quı́mica"^^xsd:string ;

9

10 //other turtle instances declaration ...

The symbol colon (:), in both cases (Listings 8.1 and 8.2), is an alias that de-

notes the default prefix of the running example ontology

(http://semanticweb.org/rgm/2018/mvif/).

The processing of such stored data will be seen in the following chapters.

Chapter 10 will describe CaVagen and the other components related to the

mentioned task. The following chapter presents CaVaDSL, a language to spec-

ify the virtual Learning Spaces.

concept+literal like in :URI/Period#{id per}, which means the pattern will be a
new rule on the OBDA model)

Chapter 9

CaVaDSL– Learning Space

Specification

Several applications are based on Domain-Specific Languages. They provide

the right terminology to a peculiar problem/subject, because they use a

particular domain vocabulary that defines abstract concepts, di↵erent from

general-purpose languages.

Aiming at an easy generation of virtual Learning Spaces for the use of the

person in charge of institutional archives or museums, an external domain-

specific language was idealized and developed, called CaVaDSL, to describe,

in an abstract level, virtual exhibition rooms in the museum Curator’s per-

spective, giving the Curator the possibility to specify the virtual LS upon a

domain ontology vocabulary.

In accordance with Cadavid et al. thoughts, the web application assemble

is a complex process, which demands a big e↵ort to get several tasks done

[Cadavid et al., 2009]. Even today, with powerful tools aiming at creating

web applications (in this PhD work, learning spaces), a domain-specific lan-

guage that empowers domain experts to specify virtual environments in their

terminology, is an essential resource, easier than requesting the domain spe-

cialist to specify them in a general-purpose programming language. Most of

71

72 CaVaDSL– Learning Space Specification

the time, the domain expert should know or learn more than one general-

purpose language to get a virtual LS done and working.

Thus, taking advantage of the development of domain-specific languages

(Section 4.4) and following the design guidelines outlined in Section 4.3,

CaVaDSL was created in order to foster the Cultural Heritage Curator to

specify a virtual Learning Space, letting the CaVaprocessor conduct the auto-

matic creation of that LS. CaVaDSL focuses on the exhibition rooms, so the

main component of the language is a list of exhibitions – in the context of

this PhD research, the term exhibition refers to “the outcome of the action of

displaying something” [Desvallées, 2010]. According to Davallon, exhibition

“means the act of displaying things to the public, the objects displayed (the

exhibits), and the area where this display takes place” [Davallon, 1986]. The

CaVaDSL syntax is presented in Section 9.1.

9.1 CaVaDSL Syntax

The syntax of CaVaDSL is similar to that of the JSON (JavaScript Object

Notation) language, because it is based on the ‘key-value pair’ format and

it is easy for humans to read and write. The structure of CaVaDSL is split

into four main blocks that specify: the main configuration, the header, the

content, and the footer of the virtual Learning Space, as specified by the

derivation rule p0.

[p0] cava: mainConfig header content footer ;

Next, the CaVaDSL specification will be presented, based on the MVIF run-

ning example, following the rules of CaVagrammar1.

1 In this chapter, only a part (main productions rules) of CaVagrammar for the
understanding of the chapter and the given examples is presented. Appendix A.1
shows the entire CaVagrammar.

9.1 CaVaDSL Syntax 73

mainconfig

Defines the virtual Learning Space title and main description, as well as,

other components (e.g., carousel of images) related to the entire LS (not only

about a specific page, like an exhibition, for example), and it is specified by

the production rule p1:

[p1] mainConfig: ‘mainconfig’ ‘[’ learningSpaceTitle learningSpaceAbout?
learningSpaceCarousel?

‘]’ ;

To demonstrate how the production rule p1 is applied, an example is pre-

sented:

1 mainconfig [
2 LS title: “Museu Virtual Interativo da Fotografia”,
3 about [
4 p: “O museu virtual da fotografia se prop~oe a
5 organizar as informaç~oes históricas dentro de
6 temáticas curatoriais apresentadas em cronologia.”,
7 p: “Partimos de uma convicç~ao: n~ao é possı́vel
8 compreender a importância, as possibilidades,
9 o presente e o futuro da fotografia sem compreende
10 as ideias e os conceitos, os equipamentos e as
11 tecnologias, as práticas e os usos, os personagens e
12 suas trajetórias pelos quais e por onde a fotografia
13 passou para chegar onde chegou nos dias de hoje.”,
14]
15 carousel [
16 interval: 5,
17 images [
18 caption: “Author - Ricardo Ravanello”,
19 src: “imagem-capa-mvif.png”, active,
20 caption: “Fornalha de um Hammam -
21 Marrocos, 2015 (Ricardo Ravanello)”,
22 src: “imagem2-mvif.jpg”,
23]
24]
25]

menu

Defines the main menu of the virtual Learning Space, as specified by the

production rule p2. The menu is composed of:

74 CaVaDSL– Learning Space Specification

• brand, background and foreground colors;

• behaviour (if the menu should be fixed or if it should follow the scrolling

of the page);

• type of the menu links (simple or dropdown), containing the label and

the link.

[p2] header: ‘menu’ ‘[’ (optionHeader)+ ‘]’ ;
optionHeader: brand | backgroundColor | fontColor

| behaviourStat | items ;

To demonstrate how the production rule p2 is applied, an example is pre-

sented:

1 menu [
2 brand: “Museu Virtual Interativo da Fotografia”,
3 background color: green,
4 foreground color: white,
5 behavior: fixed,
6 options [
7 label: “Exibiç~oes”, dropdown [
8 dropdown label: “Permanentes”, url: “permanentes”,
9 dropdown label: “Temporárias”, url: “temporarias”,
10 dropdown label: “Especiais”, url: “especiais”,
11 dropdown label: “Futuras”, url: “futuras”,
12]
13 label: “Temáticas”, dropdown [
14 dropdown label: “Técnicas Fotográficas”, url: “tecnicas”,
15 dropdown label: “Equipamentos”, url: “equipamentos”,
16 dropdown label: “Evoluç~ao Conceitual”, url: “evolucao”,
17 dropdown label: “Tipos de Intervenç~ao”, url: “tipos”,
18]
19 label: “Sobre”, url: “sobre mvif”, extension: php,
20]
21]

exhibitions

A list of exhibitions, specified according to the production rule p3. Each

exhibition is composed of:

9.1 CaVaDSL Syntax 75

• title, short description and icon;

• additional info with a title and a description;

• behaviour (if the component of the list should stay collapsed or ex-

panded);

• exhibition type (must be one of the following: permanent, temporary2,

future, or special).

• query operator (specified according to the production rule p4):

– all (search for all occurrences of a determined ontology concept

declared and returns the set of instances);

– one (search for only one object that corresponds to the conditional

parameter and the ontology concept. It returns the first instance).

• SPARQL query (specified according to the production rule p5).

[p3] exhibitions: ‘exhibitions’ ‘[’ (exhibition)+ ‘]’ ;
exhibition: ‘exhibition’ ‘[’ (optionExhibition)+ ‘]’ ;
optionExhibition: exhibitionTitle

| exhibitionShortDescription
| exhibitionIcon
| exhibitionBehaviour
| exhibitionAdditionalInfo
| exhibitionType
| exhibitionNotification
| (queryOperators | sparql) ;

The queryOperators rule is responsible for describing the operator to query

the database repository through the ontology. It is specified by the produc-

tion rule p4:

2 If the type is set up to ‘temporary’, it is possible to configure a notification to the
visitor of the LS based on the exhibition expiration date;

76 CaVaDSL– Learning Space Specification

[p4] queryOperators: all | one ;
all: CONCEPT ‘->’ ‘all’ ‘(’ parametersAll ‘)’ labelsOptions ;
parametersAll: listName ‘,’ mappingOrTriplesFileName ‘,’

ontologyFileName ;
listName: TEXT ;
mappingOrTriplesFileName: TEXT ;
ontologyFileName: TEXT ;
labelsOptions: ‘[’ (labelsExhibitionRoom)+ ‘]’ ;
labelsExhibitionRoom: elem (‘,’ elem)* ;
elem: TEXT ;

sparql is the production rule in charge to query the database repository

through the ontology via the SPARQL query language. It is described ac-

cording to the rule p5:

[p5] sparql: ‘SPARQL’ ‘[’ sparqlStatement ‘]’ ‘[’ labelsOptions ‘]’ ;

Notice that the production rule sparqlStatement is a declaration based and

verified by the SPARQL grammar.

To demonstrate how the production rules p3 and p4 are applied, an example

is presented. Notice that the lexer rule CONCEPT shall be related to a class of

the used ontology.

9.1 CaVaDSL Syntax 77

1 exhibitions [
2 exhibition [
3 title: “Técnicas da Fotografia”,
4 short description: “Dividimos a história da fotografia
5 em três grandes perı́odos. Essa classificaç~ao
6 se justifica n~ao apenas pela mudança dos
7 suportes ou das técnicas, mas
8 também pelo fato de que é possı́vel
9 diferenciar drasticamente todo o sistema
10 em torno da fotografia em cada
11 um dos três momentos.”,
12 icon: “camera-retro”,
13 additional info [
14 title: “1672-2010”,
15 description: “Perı́odo”,
16]
17 behavior: expanded,
18 type: permanent,
19 Technique->all(“Técnicas”, “mvif.obda”,
20 “http://semanticweb.org/rgm/2018/mvif/”)
21 [headerOfEachElement:“Técnica”, “Década”,
22 “Descriç~ao”, “Perı́odo”],
23],
24 # other exhibitions . . .
25]

footer

Defines an area at the bottom of the LS. It is defined by the production rule

p6. The footer contains:

• images and date;

• company or developer name;

• behaviour (if the footer should be fixed or if it should follow the scrolling

of the page);

• style (if the footer should be simple with the data above mentioned or

it should be extended, having an array of links with title, subtitle, URL

(Uniform Resource Locator), icon, etc). The extended footer is good

for addresses, social network links and other important information

related to the virtual Learning Space.

78 CaVaDSL– Learning Space Specification

[p6] footer: ‘footer’ ‘[’ (optionFooter)+ ‘]’ ;
optionFooter: footerImage | footerFormatDate | footerDeveloper

| footerBehavior | footerStyle ;

An example illustrating the production rule p6 is presented:

1 footer [
2 images [
3 image: “cava logo.png”,
4 alignment: right,
5]
6 format date: “Y”,
7 developer [
8 name: “Ricardo Martini”,
9 alignment: left,
10]
11 behavior: fixed,
12 style: condensed,
13]

Notice that each block and component specification starts with the left

bracket “[” and closes with the right bracket “]”, always embracing pairs

consisting of plain text or built in terms (e.g., the exhibition’s behavior at-

tribute can be set up as ‘collapsed’ or ‘expanded’ values only).

To accomplish the given example, Chapter 11 presents the final version of

the virtual Learning Space related to the “Museu Virtual Interativo da Fo-

tografia”, according to the rules of CaVagrammar. In other words, Chapter 11

will present the rendering of each of the four blocks of CaVaDSL. Chapter 10

describes the process of recognizing the CaVaDSL specification and generating

the LS Scripts according to that Learning Space specification.

Chapter 10

Module B - CaVaprocessor

The application generation process from a formal specification comprises the

stage of transforming an input (formal specification itself) into one or more

outputs (application code). This means that to interpret and translate the

formal specification (CaVaDSL) into the application code (all the scripts or

programs) needed to build a web-application1, a transformation phase will

be necessary, which is one of the components of a compiler.

A domain-specific language compiler holds the same internal structure of a

regular compiler, with a front-end, an intermediate representation, and a

back-end component (Figure 10.1).

Figure 10.1: Block Diagram of a Compiler

The front-end, composed of the lexical, syntactic, and semantic analyzers re-

ceives the formal specification (in this case, a virtual LS description written

in CaVaDSL) as input, parsing and mapping it to an Intermediate Represen-

tation (IR).

1 e.g., scripts in PHP, CSS, JS, Smarty template, HTML, etc.

79

80 Module B - CaVaprocessor

The Intermediate Representation, usually a complex data structure, must

not lose the meaning of the initial formal specification.

The back-end component receives an IR as input. From this IR, it is respon-

sible for the generation of the final result (e.g., executable application).

Summing it up, according to Figure 10.1, from a formal specification, through

the analyzers of the front-end, an IR is generated. In the next step, the

back-end receives as input the generated IR and produces an application,

which is written in a cocktail of languages (see footnote 1). When an

application is well-defined (structure and behavior), it can be automated

[Krstićev et al., 2016]. So, in this work, a set of application generators to

automatically create virtual Learning Spaces based on the CaVaDSL specifi-

cations and ontologies was built.

This chapter presents the CaVa architecture’s core. The CaVaprocessor contains

the main components to achieve the objective outlined in this PhD work.

The CaVaprocessor consists of a set of processors (CaVagen) that deal with

CaVaDSL and generate virtual Learning Spaces, making available the naviga-

tion over important and real information contained in archival documents to

the public through virtual museums.

To parse CaVaDSL in order to produce the right configuration and script files

understandable by the web browser with the objective of rendering the virtual

Learning Spaces, this chapter presents a group of processors (CaVagen) that

receive one or more input files and generate a set of files as output, like the

view templates, server- and client-side files, webpage presentation style and

the static content of the virtual LS.

CaVaprocessor has two objectives: (1) parsing the specification (manually writ-

ten by the Curator or the CH institution) of a virtual LS based on CaVaDSL,

which is defined by CaVagrammar; and (2) generating/setting up the LS scripts

component of CaVarender, that comprises the configuration and script files

necessary to be rendered by the web browser to produce the final objective

(the virtual Learning Space).

81

Figure 10.2 shows a simple CaVa workflow involving the three steps that shall

be followed to achieve the main goal of this work.

Figure 10.2: CaVa workflow: from the CaVaDSL Specification to the virtual
LS automatic generation in three steps

• Step 1 (Specification of a virtual Learning Space in CaVaDSL): the first

task is to specify the virtual LS (this specification shall be done by the

CH institution responsible), because it is from the virtual LS specifica-

tion that CaVagen advances to the other stages. Step 1 was described

in Chapter 9;

• Step 2 (Automatic generation and assembly of queries): when a query is

specified in CaVaDSL, it is in this phase that the processor automatically

creates the queries. CaVagen generates, in an automatic way, ontology

queries (e.g., SPARQL, SQWRL) based on that queries grammar (e.g.,

SPARQL, SQWRL grammar).

• Step 3 (Automatic generation of static and dynamic content of LS

Scripts): it comprises the automatic creation of the configuration and

script files. The configuration files are those that set up the whole vir-

tual LS with component parameters and libraries needed to successfully

run the project in the web browser. Besides, in this phase three kinds

of files are created:

– the static structure: view templates and server-side files (e.g.,

header, content, footer, etc.);

82 Module B - CaVaprocessor

– the webpage presentation style and client-side files (e.g., Cascad-

ing Style Sheets – CSS, javascript – JS, etc.);

– the virtual LS webpage static content (e.g., plain text, images).

Moreover, the outcome of step 2 (query results) are used, as input, in

step 3 to produce and to populate the client- and server-side files (for

instance, the museum exhibitions’ content).

From step 1, if there is at least one query operator specified at any exhibition

room of the CaVaDSL specification, step 2 is executed, followed by step 3;

otherwise, from step 1, step 3 is executed (excluding step 2 of running),

generating only the static content of the LS. After executing these steps,

the web browser (comprised in CaVarender) will receive the necessary script

files aiming at interpreting and rendering the final virtual Learning Space

specified by the Curator of the Cultural Heritage institution. CaVagen is

presented in Section 10.1.

10.1 CaVagen

The CaVagen set consist of four processors, namely CaVastructure, CaVaqueries

(CaVaqueriesTriple for triples, instead of mappings), and CaVarun. The first one

is responsible for the generation of the static content of the virtual LS. More-

over, CaVastructure has the task of executing the CaVaqueries or CaVaqueriesTriple

processor (if at least one query operator is set up in the CaVaDSL Specifica-

tion). The second and third one have the duty of assembling the ontology

queries based on the query operator(s) specified in the CaVaDSL description.

They shall handle the mapping or other intermediate file that links the on-

tology to the database (e.g., an OBDA mapping file, a Terse RDF Triple

(turtle) file, etc). The last one, CaVarun, is responsible for executing the

queries mounted by CaVaqueries or CaVaqueriesTriple Processor and generates

the queries results file to be used by the LS Scripts.

10.1 CaVagen 83

CaVastructure

The purpose of CaVastructure is to get the LS Specification (CaVaDSL) as input

and transform it into several web languages scripts (e.g., HTML, PHP, JS,

template engines, CSS, etc.) and other kind of documents (e.g., state files2),

that together make up multiple web pages, i.e., the complete virtual Learning

Space. Figure 10.3 presents the CaVastructure schema.

Figure 10.3: CaVastructure processor schema

The dashed rectangle represented in Figure 10.3 by number (1) is related to

the step 1 of the CaVa workflow (Figure 10.2). This means that the circles

CaVaDSL, CaVa Specification and .cava are a specification file describing a vir-

tual Learning Space according to the rules of CaVaDSL (Chapter 9), which is

defined by CaVagrammar, that in turn is processed by the CaVagrammar Proces-

sor. The duty of the CaVagrammar Processor is the processing of the grammar

(CaVagrammar) and the generation of the CaVastructure skeleton.

CaVastructure extracts the ontology concepts used in the .cava specification file

and stores them in a CaVa State file (e.g., plain text, JSON, etc.), aiming

at recognizing them in the mappings at step 2 (Figure 10.2) of the CaVa

workflow, which generates and assembles the queries.

The skeleton generated is related to the actions that the parser must take

when recognizing the parts of the input (CaVaDSL Specification).

2 State files contain data to be used by the processors of CaVa system in order to
retrieve important information to proceed with the execution and generation of the
virtual LS.

84 Module B - CaVaprocessor

If the parser generator is, for example, ANTLR, then the skeleton could be a

set of listeners or visitors methods3. The skeleton that ANTLR generates is

a Java Interface and a Java Class (empty implementation of all productions

of CaVagrammar as methods, that implements the generated Java Interface).

The empty class is extended according to the project needs to create a new

class with the parser actions.

The listener implementation is responsible for the generation of the final vir-

tual Learning Space. Listing 10.1 shows some listeners signature to illustrate

the enter and exit events associated with the CaVagrammar nonterminals cava,

mainConfig, header, and all.

Listing 10.1: Java Interface with listeners signatures based on CaVagrammar

productions
1 public interface CavaListener extends ParseTreeListener {

2 void enterCava(CavaParser.CavaContext ctx);

3 void exitCava(CavaParser.CavaContext ctx);

4 void enterMainConfig(CavaParser.MainConfigContext ctx);

5 void exitMainConfig(CavaParser.MainConfigContext ctx);

6 void enterHeader(CavaParser.HeaderContext ctx);

7 void exitHeader(CavaParser.HeaderContext ctx);

8 void enterAll(CavaParser.AllContext ctx);

9 void exitAll(CavaParser.AllContext ctx);

10 //other signatures ...

11 }

To better understand how CaVastructure works, a practical example to generate

the menu of the running example about the MVIF museum is shown. The

output language chosen for this example is PHP.

The result of executing all listeners related to the generation of the LS menu

is shown in Listing 10.2, configuring that output as the whole “header.php”

script file.

Listing 10.2: Generated PHP code for creating the MVIF menu according to

the CaVaDSL specification
1 <?php

2 $data = array(

3 ’brand’=>"Museu Virtual Interativo da Fotografia",

4 ’bgColor’=>"green",

5 ’fontColor’=>"white",

6 ’behaviour’=>"fixed",

3 Listeners and visitors are objects that respond to rule entry and exit events for each
nonterminal of the grammar.

10.1 CaVagen 85

7 ’options’=>array(

8 array(’label’=>"Exibiç~oes", ’dropdown’=>"true",

9 ’dropdownListItems’=>array(

10 array(’labelDropDown’=>"Permanentes", ’urlDropDown’=>"permanentes"),

11 array(’labelDropDown’=>"Temporárias", ’urlDropDown’=>"temporarias"),

12 array(’labelDropDown’=>"Especiais", ’urlDropDown’=>"especiais"),

13 array(’labelDropDown’=>"Futuras", ’urlDropDown’=>"futuras"),

14),

15),

16 //dropdown ‘‘Temáticas’’ ...

17 array(’label’=>"Sobre", ’url’=>"sobre_mvif", ’dropdown’=>"false"),

18),

19);

Besides the generation of static LS scripts, the execution is then passed to

the CaVaqueries or CaVaqueriesTriple processors (notice that node number (2) in

Figure 10.3 expands to the block diagram in Figure 10.4), to assembly the

query statements. After that, the execution is returned to CaVastructure to

proceed with the creation of the remaining files (namely, the exhibition room

files), using the information generated in step 2 to populate the template files

in the exhibition rooms. The automatic generation of the exhibition rooms

by CaVastructure is shown in the CaVarun section, after the execution of the

queries.

The output of CaVastructure is a set of static LS scripts (e.g., .php, .html, .css

files), some of them related to the server side, and other to the client side.

CaVaqueries and CaVaqueriesTriple

CaVagen has, besides the generator of static content (CaVastructure), two pro-

cessors to automatically create dynamic content based on the input file type.

This means that a method that figures out the input file format exists, and

depending on this, it is possible to call the right processor (CaVaqueries or

CaVaqueriesTriple) to recognize the intermediate (e.g., mapping or triples spec-

ification) source code file.

Figure 10.4 presents the whole schema for the two options (triple store or

other kind of storage e.g., relational database, object-oriented database, etc.).

The CaVaqueries processor deals with any kind of storage, except triple stores,

which is managed by the CaVaqueriesTriple processor.

86 Module B - CaVaprocessor

Figure 10.4: CaVaqueries and CaVaqueriesTriple processors

When CaVastructure parses and identifies the query operators in a CaVaDSL

specification, a method is called, to choose and invoke the right query assem-

bler processor. The input file must be written according to the ontology’s

description. This means that the specification file must include only concepts

and properties that belong to the used ontology. For the running example,

the ontology used is the one specified in Chapter 7, about the MVIF museum.

The approach to solve the automatic generation of queries reuses well-defined

grammars (e.g., for the triple store, grammars like RDF, Turtle, etc.). This

ensures that each token of the input file will be recognized based on the

original grammar rules.

To generate the right query aiming at getting the database instances through

the ontology, to populate the exhibition rooms of the virtual LS, five steps,

performed by CaVaqueries or CaVaqueriesTriple, have to be executed:

1. Searches for occurrences of the ontology concept (like in the statement

Technique->all()) in the intermediate file (e.g., OBDA mapping,

RDF triples file, etc.);

10.1 CaVagen 87

2. Expands each mapping axiom related to the query imposed in the

CaVaDSL specification (like in Technique->all() statement) – it is

possible due to the CaVa State file that stores the concept appointed

in the operator of CaVaDSL, in the case of the running example, all(),

selecting only those related to the concept that the Curator wants;

3. Stores all the mapping axioms related to the desired query, expanded

in task 2;

4. Mount the query statement. For example, to SPARQL queries and

OBDA mapping file, an approach could be the transformation of each

placeholder related to a literal (i.e. those annotated only as curly brack-

ets {}) in a SELECT clause variable with name ?p 0, ?p 1, depending

how many literals are found; Also transforms each placeholder (con-

cept+literal) in a new variable of the WHERE clause;

5. Creates and writes the generated query file (e.g., “.rq”).

To explain how the automatic generation of the queries could be made in

CaVa, based on these five steps, the use of the running example is taken.

The approach here explained is based on the use of the OBDA mapping file

(“mvif.obda”) described in Listing 8.1. The desired output is a SPARQL

query (“.rq”) file.

First of all, the concept declared in the example shown in Section 9.1

(Technique->all(‘‘params’’)[‘‘list of attributes’’]), when recog-

nized by the application generator in charge, is stored in a CaVa State file to

be searched in the mapping axioms of the entire mapping file (“mvif.obda”

– parameter of the operator all()).

After finding the mapping axioms related to that concept, which must exist

in the ontology passed in the third parameter of the operator all(), the ex-

pansion should be done, visiting each placeholder in the format of concept +

literal.

So, being the Technique concept the main concept in the CaVaDSL specifica-

tion, when the application generator detects a pattern like “:Period#{id per}”,

88 Module B - CaVaprocessor

this means that a new mapping rule with the Period concept is declared in

the mapping file, so it needs to be stored, as explained in task 3 of the five

steps. The search for new patterns continues, trying to find and expand new

mapping rules.

Besides the expansion of each pattern found, every placeholder should be

transformed into a variable in the SPARQL query. A SPARQL query is

basically composed of two parts: the SELECT clause, which identifies the

variables to appear in the query results; and the WHERE clause, which de-

fines where to find values for the variables defined in the SELECT clause.

So, the placeholders related to a literal should be transformed into a variable

of the SELECT clause. For the running example, the literal {cat} is trans-

formed into a variable with the identification ?p 0. The next literal found

shall be identified as ?p 1 and so on.

The variables of the WHERE clause, which forms the triples (graph pat-

tern), are identified by the application generator. The name of the vari-

ables are given based on the identification of the placeholder pattern (the

part between “:” and “#” for example). To exemplify how the variable

name is given, from the pattern “:Period#{id per}”, the variable “?Pe-

riod” is defined, as the variable “?Pre Photography” is determined from the

“:Pre Photography#{id per}” pattern.

To finish, the CaVaqueries processor creates and writes the “.rq” file contain-

ing the prefixes4 and clauses (SELECT and WHERE). In Listing 10.3 the

generated SPARQL query is presented.

Listing 10.3: Generated query file fragment – “queryAll1.rq”
1 PREFIX : <http://semanticweb.org/rgm/2018/mvif/>

2 PREFIX owl: <http://www.w3.org/2002/07/owl#>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?p 0,?p 1,?p 2,?p 3

7 WHERE {

8 ?Technique a :Technique ;

9 :has period ?Period ; :has name ?p___0 ;

10 :has decade ?p___1 ; :has description ?p___2 .

11

12 ?Period a :Period ;

4 The prefixes in the OBDA file are taken from a section called [prefixDeclaration].

10.1 CaVagen 89

13 :has per ?p___3 .

14

15 //other graph pattern declarations (triples)...

16 //... according to the mapping axioms

17 }

In order to execute the generated query (Listing 10.3), the CaVarun processor

of CaVagen is necessary. It is explained next.

CaVarun

CaVarun is a query answering system5 that handles the output of the CaVaqueries

and CaVaqueriesTriple processors. Figure 10.5 lays out the schema to execute

the queries in the CaVa system.

Figure 10.5: CaVarun schema

To achieve the results of the generated query by CaVaqueries or CaVaqueriesTriple,

CaVarun needs to perform six tasks:

1. Receives as input the mapping or other intermediate file (mappings or

triples specification);

2. Receives as input the ontology (e.g., an external IRI (International Re-

source Identifier)). More specifically, the terminological components of

5 Some of the most known systems for this purpose are Virtuoso, D2RQ, Triplify, etc.

90 Module B - CaVaprocessor

the ontology (TBox) like classes and properties (the controlled vocab-

ulary);

3. Prepares the configuration for the ontology reasoner instance, depend-

ing on the Database Repository type;

4. Creates the instance of the ontology reasoner. For example, if the

Database Repository is a relational schema, it is necessary to set up

the connectivity driver (e.g., JDBC);

5. Prepares the data connection for querying and executes the query;

6. Writes the query execution result into a file to be read by the specific

exhibition room that called the query operator in CaVaDSL specification.

After the execution of these six steps, the generated exhibition room shall

deal with the query result file in order to present the result set in the final

view (exhibition room rendered).

The application of these six steps for the running example about the MVIF

museum is demonstrated applying the following configuration. Notice that

as the Ontop Framework is applied, the Quest query answering system, ex-

plained in [Rodŕıguez-Muro et al., 2012], performs the role of CaVarun.

1. Receives as input the mapping axioms based on the OBDA model (On-

top is engaged to aid in the mapping between the relational database

and the ontology) as described in Listing 8.1 (“mvif.obda”);

2. Receives the MVIF ontology described in Figure 7.1 using the IRI

http://semanticweb.org/rgm/2018/mvif/;

3. Prepares the configuration for the Quest instance. A “virtual ABox

mode”6 can be used.
6 Read more at: https://github.com/ontop/ontop/wiki/ObdalibQuestIntro

http://semanticweb.org/rgm/2018/mvif/
https://github.com/ontop/ontop/wiki/ObdalibQuestIntro

10.1 CaVagen 91

4. Creates the instance of the ontology reasoner (Quest). It is based on the

OBDA model of step 1, the ontology of step 2, the configuration of the

Quest instance of step 3, and the connectivity driver of the relational

database (e.g., MySQL – com.mysql.jdbc.Driver);

5. Prepares the data connection for querying (database credentials like

user, host, port, and password) and the generated SPARQL query of

Listing 10.3;

6. Writes the query execution result in a JSON file.

The JSON result file generated is presented in Listing 10.4.

Listing 10.4: Snippet of JSON result file generated by CaVarun–

“queryAll1.json”
1 {

2 "0": {

3 "0": "Desenhos Fotogênicos",

4 "1": "1830",

5 "2": "Willian Henry ...",

6 "3": "Perı́odo da fotografia Quı́mica"

7 },

8 "1": {

9 "0": "Daguerreótipo",

10 "1": "1830",

11 "2": "O Daguerreótipo...",

12 "3": "Perı́odo da fotografia Quı́mica"

13 },

14 //other JSON objects ...

15 }

To achieve the result shown in Listing 10.4, the exhibition room generated

shall call the command to execute the query generated by CaVaqueries or

CaVaqueriesTriple.

In this stage, CaVastructure gets back the flow of execution and generates the

exhibition room server-side files (for the running example, a single file in PHP

called “exhibition1.php”) consisting of all data necessary to be rendered. The

exhibition room file related to the running example presented is shown in

Listing 10.5.

92 Module B - CaVaprocessor

Listing 10.5: Automatically generated PHP code for an exhibition room –

“exhibition1.php”
1 <?php

2 $sparqlQuery = "queryAll1.rq";

3 $sparqlResult = "queryAll1.json";

4 $mappingOrTriplesFile = "mvif.obda";

5 $IRIOntology = "http://semanticweb.org/rgm/2018/mvif/";

6 $jarFilePath = ".../mappingOnto2Database.jar ";

7 shell_exec($jarFilePath . " " . $sparqlQuery . " " . $sparqlResult

8 . " " . $mappingOrTriplesFile . " " . $IRIOntology);

9 $json = file_get_contents($sparqlResult);

10 $data = json decode($json, TRUE);

11 $data [’labels’] = array(

12 0 => "Técnica",

13 1 => "Década",

14 2 => "Descriç~ao",

15 3 => "Perı́odo",

16);

17 $data [’collapsed’] = "expanded";

18 $tpl = new SMTemplate();

19 $tpl->render(’exhibition1’, $data);

The code of the“exhibition1.php” file basically (a) gets as input: (1) the

generated SPARQL query “queryAll1.rq”; (2) a file (“queryAll1.json”) to

store the result of the execution of the query; (3) the mapping or triples

file (“mvif.obda”); (4) the IRI ontology (“http://semanticweb.org/rgm/2018/

mvif/ ”); and (5) the jar file that e↵ectively performs the mapping and the

execution of the generated query of step (1) – CaVarun performed by Ontop

(Quest reasoner); (b) executes the shell exec() command with the inputs; (c)

gets the content of the JSON result file (“queryAll1.json”), which was filled

by the executed jar; (d) decodes and stores the JSON result file content in

the variable $data; (e) stores some configurations related to the exhibition

room, as the labels chosen in the operator all() and sets a flag to define if

the User Interface (UI) component (in this case, an accordion) will appear

expanded or collapsed; and (f) finally renders the exhibition room from the

$data variable content.

Notice that the exhibition room code calls the command to execute the query

(the line with shell exec(...) command), every time the page is requested.

The next section will describe CaVarender, responsible for rendering the final

virtual Learning Spaces.

Chapter 11

Module C - CaVarender

As aforementioned, a virtual Learning Space is basically a web environment

where the information available about a specific domain is disposed for the

users to learn the content displayed in a friendly and interesting way. Thus,

the last block of the architecture aims at generating, from the LS scripts, a

virtual Learning Space which is a web page that contains all the information

that is desired to be shown to the visitors.

The LS scripts generated by CaVastructure, CaVaqueries or CaVaqueriesTriple, and

CaVarun, describe the intended LS in a less abstract level, more precisely in

a programming language style. They state how to get the instances in the

database repository with the actual data that shall be displayed in the final

virtual Learning Environment. After that, a browser must interpret the LS

Scripts to exhibit the web page that constitutes the final virtual Learning

Space.

So, this chapter shows each stage of the running example described, present-

ing some images related to the LS Scripts, which constitute the final virtual

LS.

Through the CaVaDSL Specification (Chapter 9), LS Scripts were automati-

cally generated. In Section 9.1, the virtual LS was specified part by part. So,

based on the Section 9.1 organization (production rules and specification ex-

93

94 Module C - CaVarender

amples) and Chapter 10 LS Scripts, the rendering parts of the entire virtual

Learning Space are shown.

The main configuration become rendered as presented in Figure 11.1.

Figure 11.1: Main configuration rendered

Figure 11.1 shows the main components (LS title, about and carousel) as

specified in MVIF CaVaDSL Specification running example for the whole LS.

The MVIF menu becomes rendered, based on the code of Listing 10.2, as

presented in Figure 11.2.

Figure 11.2: MVIF Menu rendered

The MVIF menu, according to the CaVaDSL Specification, has a “brand”, that

configures the title “Museu Virtual Interativo da Fotografia”, and three menu

95

options. Two of them are dropdown lists (“Exibições” and “Temáticas”) and

one is a simple menu (“Sobre”).

The exhibitions are separated by type. As only one “permanent” exhibition

was specified in the running example, it appears in the dropdown menu

option “Exibições�>Permanentes”. Figure 11.3 shows the exhibition room

according to the CaVaDSL Specification about the exhibitions part in Section

9.1 and other LS Scripts.

Figure 11.3: Exhibitions list rendered

The permanent exhibition list contains only one exhibition rendered in ac-

cordance with the CaVaDSL Specification running example. In Figure 11.3,

the specified visible attributes are the “title”, “short description”, “icon”

(camera-retro), “additional info” (1672-2010 Peŕıodo) and “behavior” (ex-

panded, denoted by the chevron-up icon in the top right corner). The rest

of the attributes and query operator result are visible inside the exhibition

room, as seen in Figure 11.4, which presents the final exhibition room ren-

dered according to the code of Listing 10.5.

96 Module C - CaVarender

Figure 11.4: Permanent exhibition Room (exhibition1.php) rendered

The “exhibition1.php” file content contains a list of photography techniques

based on Listing 10.5 and the query results of Listing 10.4.

The footer of MVIF running example, described according to CaVaDSL Spec-

ification is shown in Figure 11.5.

Figure 11.5: MVIF footer rendered

The footer contains images, alignments, format date, behavior (fixed) and

style (condensed), specified in accordance with the CaVaDSL specification of

the MVIF running example.

Next, in Part III, the case studies are described applied in the CaVa archi-

tecture, showing all the stages needed to achieve the final goal of this PhD

research, the virtual Learning Spaces.

Part III

Case Studies

97

Chapter 12

Case Study 1 – Emigration

Documents belonging to Fafe’s

Archive

The act of leaving a country (usually of origin) towards another, to establish

residence, is called emigration. This case study is applied in the context of the

emigration phenomena in Portugal, more specifically the emigration move-

ment from Fafe (a city in the north of Portugal) towards several countries,

dated from 1960 until 1970.

The main concept for this case study is the emigrant, a person who leaves his

country to live in another. Most of them do it to improve their economic con-

ditions, search for jobs, escape from an area of natural disaster or devastated

by a war, etc.

This work had the cooperation of the municipal Archive of Fafe, which is

liable for the preservation, organization, and dissemination of the physical

emigration documents1 content.

This collaboration has brought many benefits in the scope of the development

of this case study. Working with professionals of the domain like archivists,

1 The documental series “processos de emigração” contains more than 6400 records.

99

100Case Study 1 – Emigration Documents belonging to Fafe’s Archive

has brought the opportunity to learn and to improve the knowledge about the

documents and what they include as well as the chance to exchange informa-

tion and experience with the experts in terms of the emigration documents.

The municipal Archive of Fafe holds fonds related to the emigration domain

like passport application forms, ship routes, biographies, almanacs, among

others. At this moment, for this case study, the passport application forms

are the only object of study. Although not created as works of art, those

documents contain information that after processed can be considered as

historic cultural material and in that sense can integrate an immaterial mu-

seum collection about Human Beings.

This chapter is organized as follows. Section 12.1 describes the structure of

the passport application forms. Section 12.2 discusses the design of the rela-

tional database repository (bdME), as well as its final schema. Section 12.3

presents the web-based information system (SGPE) to assist in the recovery

of the emigrant’s documents. Section 12.4 presents the construction of a Re-

duced CRM-compatible form ontology for the emigration domain (OntoME)

based on the international standard for museum ontologies, CIDOC-CRM.

In Section 12.5 a mapping is outlined – with the aid of the Ontop framework

– as a solution for the communication problem between bdME and OntoME.

Section 12.6 lays out a CaVaDSL specification for specifying a virtual Learn-

ing Space for the emigration domain (a virtual museum) from the curator’s

perspective. To cope with the CaVaDSL specification to automatically gen-

erate the emigration virtual LS, a set of processors (CaVagen) is applied and

explained in Section 12.7. Section 12.8 points out the rendering of the final

virtual LS about the emigration phenomena automatically generated by the

CaVa system. Finally, Section 12.9 summarizes the chapter and analyzes the

results.

12.1 The structure of the emigration documents 101

12.1 The structure of the emigration docu-

ments

The concept of emigrant has undergone changes over the years. According

to the Portuguese Decree-law 34 3302 of December 27th, 1944, an emigrant

is defined as the citizen who leaves the national territory to work in another

country, women who will accompany or join the emigrant husband, relatives

by consanguinity in any degree of the direct line or up to the third degree of

cross-line of any emigrant wishing to accompany or to join him. Years later,

another Decree-law was established. The Portuguese Decree-law number 44

4283 of June 29th, 1962, added a clause about the definition of the emigrant:

those who transfer their residence to foreign country benefiting from the

quality of emigrant or equivalent.

In order to define the principles for the protection of the emigrant, the Por-

tuguese Decree-Law 36 558 of October, 28th, 1947 created Junta da Emi-

gração, a department to treat of “all due diligence and preparatory formalities

of boarding of any emigrant and of their application forms.”4 [Ribeiro, 1986],

but later, this department was unable to deal with all the applications of the

emigration in Portugal. Then its tasks were reduced to the appreciation of

passport applications that started to be processed and archived locally at the

Municipal Departments [da Silva Nascimento, 2009].

Therefore, the emigration documents characterized in this case study are re-

stricted to those that describe the emigrants that apply for a passport in that

period (1960-70). These files contain information such as general data of the

document itself (document identification), general data about the emigrant,

list of attached documents, family members accompanying the emigrant,

desired type of transportation, qualifications (literary and professional) and

criminal records, family members in charge of the emigrants dependents (who

remain in the country), previous trips abroad, details of the person calling

2 Available at: https://dre.pt/application/file/568641
3 Available at: https://dre.pt/application/file/164552
4 See also: https://dre.pt/application/file/635905

https://dre.pt/application/file/568641
https://dre.pt/application/file/164552
https://dre.pt/application/file/635905

102Case Study 1 – Emigration Documents belonging to Fafe’s Archive

the emigrant, employment contract, aid in the destination country, among

other information. All these data items (more than 80) must be provided to

get a passport.

Each item to get a passport will be described in Appendix B in order to

clarify its meaning and the data contained.

This large set of data items has a big potential to describe each individual

integrated in the society of his epoch, but it also provides knowledge about

the society in a precise context of the country/world history. This justifies the

relevance of the dissemination of the knowledge enclosed in that particular

collection of Fafe’s Archive.

12.2 bdME, a Database to store the emigra-

tion documents Repository

This section has the goal of describing the design of a database dedicated to

the analysis of the emigration documents. To design this kind of database it

is required knowledge about the domain and also access to the organization

that provides these documents. As mentioned, this was possible due to the

cooperation with the Municipal Archive of Fafe. The design of the emigration

database was already published in [Martini et al., 2015].

The logical model of the database covers the data items, described in Sec-

tion 12.1, that are required to obtain an emigration passport. This model

with sixteen tables is the result of the normalization of the high-level concep-

tual schema firstly drawn centered on tables Processo and IdentificacaoEm-

igrante. From that, the relational database (physical model) was developed

in MySQL.

The design of this database was of great importance for this project, because

storing the emigration documents in a database is a good way to preserve

them and also to later create the Exhibition Rooms, disseminating the emi-

12.2 bdME, a Database to store the emigration documents 103

grations data. This information shall be displayed in the best possible way,

making the Exhibition Rooms easier to handle than the physical documents.

The following subsections show how the relational database is organized (con-

ceptual, logical, and physical models).

12.2.1 Conceptual Model

The data described in Section 12.1 was modified and rearranged (grouped or

separated) and is described below in a conceptual model:

• Data about the emigrants documents:

– Registration number at City Hall, registration number at the

Board of Emigration and year;

– Age and civil status of the emigrant at the document;

– Destination (country and location);

– Dispatching (date, craft and passport);

– Boarding data (type of the transport, company, date, location,

designation of the transport, whether or not the pass is paid, land-

ing port, and with who the applicant travels);

– Qualifications (literary qualifications, occupation and workplace);

– Economic conditions (remuneration, working days, reason for the

emigration and expenses of travel);

– Criminal record (whether or not he/she is judged and if the ap-

plicant or his relatives have any case pending);

– Aid in the destination country (name of the people who will give

the aids, kinship, residence, occupation and aid provided);

– Kinship of the emigrant with the caller;

– Employment contract (how the emigrant got the employment con-

tract, occupation and salary);

104Case Study 1 – Emigration Documents belonging to Fafe’s Archive

– Women and minors employed (whether or not he/she already

worked for the contractor or for the family of him/her, duration

of the work and occupation);

– Declaration of the wife (knowledge of the wife about the target

location of her husband and if the wife considers that her mainte-

nance is assured by the husband in the country that she stays).

• Residence (Location) of the emigrant: county, district, parish, and

street;

• Data about the emigrant: emigrant’s identification, name, place and

date of birth, filiation and spouse;

• Filiation of the emigrant: name of the parents of the emigrant;

• Data about the caller: name, residence, time that he/she is in the

abroad and passport;

• Data about the contractor: name, residence and if the caller knows the

emigrant;

• Data about the intermediary: name, residence, occupation, parents’

name, kinship with the emigrant, passport and how much was paid to

the intermediary;

• Description of the attached documents;

• Data about the accompanying: name, age, date of birth, kinship with

the emigrant and qualifications;

• Data about the people (family) who stay in the country: name, age of

the dependent, kinship with the emigrant, if the person is in charge of

the emigrant and residence;

• Description of other information (notes) about the emigration docu-

ments; and

12.2 bdME, a Database to store the emigration documents 105

• Previous travel abroad: whether or not it is the first time that the

applicant is traveling, date on which he/she returned, passport number

and date, and entity that issued the passport.

The database was built taking into account the data listed above (conceptual

model); the following Subsections 12.2.2 and 12.2.3 describe the technical

part of the database.

12.2.2 Logical Model

The logical model shows the relations between the database tables as well as

primary and foreign keys, i.e., the technical part of the database, but not yet

the physical model, which defines how the database was built.

Figure C.1 of Appendix C illustrates the logical model with the primary

and foreign keys, relations between the tables, and the cardinality of these

relations.

As already mentioned, this step contains the primary and foreign keys of the

database tables. Each class in Figure C.1 has a primary key and some classes

have foreign keys assigned to it. To deal with relations with cardinality 0..*

to 0..* (many to many) were created association classes that specify the

common data between tables in the relation. The tables that hold these char-

acteristics are ProcessoAcomp, ProcessoAnexo and ProcessoPessoasFam.

After describing the logical model of the database, the physical model will

be discussed in Subsection 12.2.3.

12.2.3 Physical Model

The physical model describes the implementation of the final database in

detail. Taking into account that model, it is possible to create the database

and their tables, executing statements written in SQL (Structured Query

Language). The database engine chosen for this project was MySQL.

106Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure C.2 of Appendix C shows the physical model of the database with all

the characteristics mentioned above.

As said above, the diagram shown in Figure C.2 can be translated into DDL

(Data Definition Language) statements of SQL to create the schema. Listing

12.1 is an example of a DDL statement, in this case to create the table anexo:

Listing 12.1: Snippet DDL to create table anexo
1 CREATE TABLE ’anexo’ (

2 ’idAnexo’ int(11) NOT NULL AUTO_INCREMENT,

3 ’descricao’ varchar(128) DEFAULT NULL,

4 PRIMARY_KEY (’idAnexo’)

5);

The physical construction of the database will be completed after the execu-

tion of the DDL script written according to the description of all the tables in

Figure C.2. With this stage done, the population of the database is explained

next.

12.3 SGPE, a DIS to populate the bdME Database

This section is concerned with the development of an information system

built in the context of a municipal archive aiming at supporting the preser-

vation of physical documents and at facilitating the information extraction

and dissemination. Saving individual records, like emigration documentation

is essential for end-users and History or Social Sciences Researchers as they

can know more about each record and they can learn about the society.

The emergence of the Internet provides access to the desired information

to anyone, anywhere, at anytime. As a consequence, many information

sources like libraries, museums, and other similar institutions began stor-

ing documents digitally. Thus, the data stored in digital format may be

brought forward on Web pages, displaying it to the end-users and enabling

them to learn and interact with the available information. So, this sec-

tion aims at presenting the SGPE (Sistema Gerenciador de Processos de

12.3 SGPE, a DIS to populate the bdME Database 107

Emigração)5 web-based information system to assist in the population of

the bdME database with data recovered from the emigrant’s documents.

The design and development of the SGPE system were already published

in [Martini et al., 2015]. Also the SGPE application is available at http:

//www4.di.uminho.pt/~gepl/museu_emigracao.

SGPE is an essential and initial part of CaVa, because it is a component

that is responsible for the digital storage of the emigration documents that

later are used to generate the virtual Learning Spaces (remember that it is

a component of Module A, Chapter 6).

Analyzing, understanding and transcribing the correct data of the emigration

documents are di�cult tasks when those records are written by hand or

typewritten.

Typesetting all data items mentioned in Section 12.1 and Appendix B, to

transform the original paper documents into electronic documents (for safety

and further processing), must be a user-friendly and secure task.

Typesetting errors should be avoided by reducing the text required to enter,

and by validating data fields as soon as they are fulfilled. Comboboxes (drop

down lists) o↵ering lists of predefined values to choose, and similar user

interaction techniques should be carefully identified and provided.

Thus, to transcribe and to populate the emigration database (bdME) in

an easier way, SGPE was built, designed to deal adequately with the type-

setting problems mentioned previously. SGPE was projected to cope with

the emigration documents dated from the 1960s until the 1970s. However,

the application can be used for any time period. This is true because the

interface does not impose any constraints concerning the documents date.

Moreover SGPE is not oriented to a special kind of form. This means that

SGPE can cope with data collected from similar documents with di↵erent

formats produced by Junta da Emigração along the years.

The web-based application was developed in the PHP programming lan-

5 Emigration Documents Management System.

http://www4.di.uminho.pt/~gepl/museu_emigracao
http://www4.di.uminho.pt/~gepl/museu_emigracao

108Case Study 1 – Emigration Documents belonging to Fafe’s Archive

guage, jQuery and JavaScript and with the aid of a high-performance PHP

framework (Yii6). The framework comes with rich features like MVC (Model-

View-Controller), DAO (Data Access Object) / ActiveRecord, I18N/L10N,

among others, which can significantly reduce development time. Further-

more, Yii also helps on the development of the four basic operations of a

database, automatically generating code for the CRUD (Create, Read, Up-

date and Delete) operations.

To create an Yii application, it is necessary to follow three steps: (i) Create

the database (already explained in Section 12.2); (ii) Generate the PHP code;

(iii) Customize the code to fit the needs of the application. For the second

step, Yii has a module called Gii that provides web-based code generation

capabilities. The purpose of Gii is to create the fundamental model, view,

and controller files required by the web-based application [Ullman, 2013].

As referred earlier, typesetting errors can occur and, to prevent them, SGPE

has applied the interaction techniques previously mentioned. To illustrate

this, Figure 12.1 presents three examples of preselected value components

that help the user to enter the correct data.

Figure 12.1: Components with preselected values

The first example is a component that shows a list of emigrants with their

identification numbers to select one of them. The second is a widget that

presents a predefined list of attached documents that can be appended to

the emigration records and the third is a component to select a date. These

6 Available at: http://www.yiiframework.com/

12.3 SGPE, a DIS to populate the bdME Database 109

interface components exemplify three situations that are error prone. All

widgets have the same purpose that is to let the user choose one option to

avoid duplicate data or mistyping. If the user needs to enter new data, then

the buttons on the right side of the component enable this feature (except

for the date widget).

In the Gii module two options were executed: (1) the generation of models;

and (2) the generation of CRUD operations. For the generation of models,

the only thing that is needed is to enter the table names of the database and

the result are PHP files with the name of the tables. Each PHP file created

has a PHP class associated with the same name. The models in Yii store

data and define the business rules for that data. To handle these features,

each class has some methods, the most important are called rules() and

relations().

The rules() method returns an array of rules by which the model data must

abide. This method represents a key benefit of using a framework: built-in

data validation. The relations() method is used to indicate a relationship

from one model to others, i.e., the relations between models with the foreign

keys [Ullman, 2013].

For instance, a model will receive the name identificacaoEmigrante if it rep-

resents the table identificacaoEmigrante of the database. From this model,

the Gii tool will create a file named identificacaoEmigrante.php that will

contain the methods mentioned previously, as shown in Listings 12.2 and

12.3.

Listing 12.2: rules():
1 <?php

2 public function rules() {
3 return array(

4 array(’idEmigrante, nome’, ’required’,

5 ’message’ => ’O campo {attribute} n~ao pode ser vazio.’),

6 array(’idEmigrante, idFiliacao, idNaturalidade’, ’numerical’, ’integerOnly’),

7 array(’nome, nomeConj’, ’length’, ’max’ => 64),

8 array(’idConj’, ’length’, ’max’ => 10),

9 array(’dtNasc’, ’safe’),

10

11 array(’idEmigrante, nome, dtNasc, idConj, nomeConj, idFiliacao, idNaturalidade’, ’safe’,

12 ’on’ => ’search’),

13);

14 }

110Case Study 1 – Emigration Documents belonging to Fafe’s Archive

The rules() method presented in Listing 12.2 has the array to be returned

with the attributes of the identificacaoEmigrante table with the rules for

each attribute. For idEmigrante and nome attributes, there is a rule that

identifies these attributes as required by the model, i.e., in the final ap-

plication, these attributes are mandatory to fill. If these attributes were

not filled, the message: “O campo <idEmigrante OR nome> n~ao pode ser

vazio” will be shown. The other rules in this function are similar and their

objective is to set the type and the maximum length (max) of all the table

fields.

Listing 12.3: relations():
1 <?php

2 public function relations() {
3 return array(

4 ’idFiliacao’ => array(self::BELONGS_TO, ’Filiacao’, ’idFiliacao’),

5 ’idNaturalidade’ => array(self::BELONGS_TO, ’Localidade’, ’idNaturalidade’),

6 ’processos’ => array(self::HAS_MANY, ’Processo’, ’idEmigrante’),

7);

8 }

The relations() method presented in Listing 12.3 has the array to be re-

turned with the attributes of the identificacaoEmigrante table with the rela-

tions between the identificacaoEmigrante model and other models, in this

case, the Filiacao (idFiliacao), Localidade (idNaturalidade) and Processo

(processos) models. Each element of the “returned array” (lines 4 to 6),

describes the kind of the relation. Lines 4 and 5 have a kind of relation

named BELONGS TO that means that attribute “idFiliacao” and “idNatural-

idade” belongs to the model Filiacao and Localidade, respectively. Line 6

has another kind of relationship. The relation established is HAS MANY that

represents the cardinality 1 to *, i.e., one emigrant (identificacaoEmigrante)

can have many documents, but one document just refers one emigrant.

In addition to creating the model, the views and controllers are also created

in the second step. The views are PHP files containing the code to display

the forms and graphical components to the user, i.e., the code responsible for

the user interaction with the application. In a web-based application, like

SGPE, the views are a combination of HTML and PHP code that create the

screen that the user will see in the browser [Ullman, 2013].

12.3 SGPE, a DIS to populate the bdME Database 111

A view of SGPE can be seen in Figure 12.2. This is a form for identifica-

caoEmigrante model. Note the red stars to advise the user that the field is

mandatory (required), as seen previously in the rules of the model (Listing

12.2).

Figure 12.2: Screen to register Emigrants (corresponding to the “identifica-
caoEmigrante” model)

As mentioned before, there are also the controllers, that are intermediary

agents that handle user and other actions [Ullman, 2013].

A controller is a PHP file, just like models and views. The controller has

some methods that can be understood as actions. These actions can be, for

example, create, update, delete and show a record.

The corresponding method names always start with the word “action” as

seen below [Ullman, 2013]:

112Case Study 1 – Emigration Documents belonging to Fafe’s Archive

• actionCreate(): for creating new model records;

• actionIndex(): for listing every model record;

• actionView(): for listing a single model record;

• actionUpdate(): for updating a single model record;

• actionDelete(): for deleting a single model record; and

• actionAdmin(): for showing every model record in a format designed

for administrators.

To better understand the controller part of the MVC, an example of a con-

troller (identificacaoEmigranteController.php) will be detailed showing the

actions performed by the application. For the sake of space and simplicity,

only actionCreate() will be shown.

Listing 12.4: actionCreate():
1 ?php

2 public function actionCreateEmigranteProcesso() {
3 $model = new identificacaoEmigrante;

4 $this->performAjaxValidation($model);

5 if((isset($_POST[’idEmigrante’]) && isset($_POST[’nome’]))) {

6 $model->idEmigrante = $_POST[’idEmigrante’];

7 $model->nome = $_POST[’nome’];

8 $model->dtNasc = $_POST[’dtNasc’];

9 $model->idConj = $_POST[’idConj’];

10 $model->nomeConj = $_POST[’nomeConj’];

11 $model->idFiliacao = $_POST[’idCarregaFiliacaoEmigrante’];

12 $model->idNaturalidade = $_POST[’idCarregaLocalidadeEmigrante’];

13

14 if($model->save()) {

15 $id = $model->getPrimaryKey();

16 $_SESSION[’codEmigranteAjax’] = $id;

17 }

18 }

19 if(!isset($_POST[’inserindoViaAjax’])) {

20 $this->render(’createEmigranteProcesso’, array(’model’=>$model));

21 }

22 }

As seen in the code of Listing 12.4, first a new model is instantiated (in

this case, the identificacaoEmigrante model). This is necessary to access the

fields to create a new emigrant in the database (model). After that, if the

$ POST values are not empty, each field of the model receives this value,

that is the value of the components (HTML forms) and at last, the model

12.3 SGPE, a DIS to populate the bdME Database 113

is saved (line 14). Note the word “action” at the beginning of the method

name.

After creating the fundamental models, views and controllers, in the third

step, it is necessary to customize the application with the particular needs.

As seen in Figure 12.2, the components (buttons, textfields, dropdown menus,

etc.) are not the built-in components of Yii. Yii framework has several ex-

tensions for various purposes. To customize the application components in

the views, the Yiibooster7 extension was used. This extension uses compo-

nents similar to the well known framework bootstrap8. Figures 12.3 to 12.8

show some screenshots of the SGPE application.

When the user opens the SGPE, the first page that he accesses is a tutorial

of “How to use the Management System of the Emigration Documents” with

some steps that show the flow of the system, describing the functionality (cre-

ation, update and view) of all models of the application. These models are

“identificacaoEmigrante”, “Notas”, “Filiacao”, “Acompanhante”, “Anexo”,

“Chamante”, “Contratante”, “Intermediario”, “Localidade”, “Lugar”, “Pes-

soasFamFicamPais” and “DeslAnteriores”.

Figure 12.3 illustrates the main page. The navigation bar on the top of the

page is the same for all views in the application. This navigation bar is a

menu that gives access to the models “Processo”, “identificacaoEmigrante”

and “Notas”, because the rest of the models are accessible from “Processo”

model. There is still an item called “Report” that will be presented later.

7 To learn more visit: http://yiibooster.clevertech.biz/
8 To learn more visit: http://getbootstrap.com/

114Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure 12.3: Timeline of the main page of the SGPE

From the main page, the user can access the views (pages) to create, update,

visualize or remove any item of the navigation bar. Along the steps of the

main page, it is also possible to activate any action, except the creation of the

models that are not in the navigation bar (Processo, Emigrante and Notas).

Following the steps of the initial page, the first thing to do is to access

the documents of the emigrants (“Processo”) page to create an emigrant

record. Accessing the “Processo” page, the first thing that appears is a

list of emigrant’s documents (see Figure 12.4) that shows a summary of the

documents (10 per page).

12.3 SGPE, a DIS to populate the bdME Database 115

Figure 12.4: List of Emigrant’s documents

There is also a generic menu that shows the operation available to handle

the emigrant’s documents. However, this lateral menu is similar for all other

models, always with the same options adapted to the model involved.

Depending on which page the user is viewing, the generic menu shows the

appropriated options. For example, if the user is on the page to create an

emigrant document, the options are ‘list’ or ‘manage’ documents, but if he is

on the page to view an emigrant document, the list of options are ‘list’, ‘add’,

‘update’, and ‘delete’ the selected record. As “Processo” is the main model

of SGPE, there are two exclusive navigation items to facilitate the view of

a record on the generic menu that correspond to the previous and the next

documents, respectively.

In addition to the CRUD operations, the last item in the navigation bar

(on the top of SGPE main screen) gives access to the reports concerning the

present stats of the database. One feature that SGPE provides is a summary

of the number of the records in the database. Figure 12.5 shows the graphic

with the number of records in each table of the database.

116Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure 12.5: Graphic showing the count of the records in the database

The same page also exhibits another way (percentage’s stack) to view the

number of records in the database. It can be seen in Figure 12.6.

Figure 12.6: Stack percentage of records

Subsection 12.3.1 presents some obstacles found in the development of SGPE.

12.3.1 Problems found

The Yii framework helps to reduce the development time, however the use

of such tools has some drawbacks. Mainly when these tools are opened for

developers to extend the framework. In the development of SGPE, most of

12.3 SGPE, a DIS to populate the bdME Database 117

the issues found were related to extensions namely concerned with the use of

jQuery.

In online discussion forums, many problems are reported with Yii framework

and jQuery. As SGPE has large forms to be filled, a way to fill them easily is

using Ajax/jQuery, because the content of the pages (forms) can be rendered

without the need to reload the entire page — this is a very important feature

of SGPE.

The Yii framework has some known bugs and problems with some extensions.

The Yiibooster extension working together with the Ajax/jQuery brings some

problems when rendering the components. Figure 12.7 shows in (a), the

correct form of the presentation of the components and in (b), the incorrect

form, without the rendering of the extension component.

Figure 12.7: Rendering the correct component (a) and rendering the incorrect
component (b)

Looking at Figure 12.7, there are not many di↵erences between the com-

ponent rendered in (a) and that rendered in (b), but in Figure 12.8 it is

possible to see that the component rendered in (a) has some features to help

the user to enter the correct information and in (b), this does not occur. The

extensions, frameworks and applications should provide these mechanisms

to actually aid the end-user or else, it would not be necessary to have an

application.

118Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure 12.8: Correct component (a) and incorrect component (b)

The problem illustrated in Figures 12.7 and 12.8 happened because the Yii

framework was loading jQuery twice or more. This problem was circum-

vented by not allowing the Yii framework to load it more than once. In

Listing 12.5, there is a code snippet showing the solution for this problem.

Listing 12.5: actionCarregaFiliacoes():
1 <?php

2 public function actionCarregaFiliacoes()

3 $model = new filiacao;

4

5 Yii::app()->clientscript->scriptMap[’jquery.js’] = false;

6 $this->renderPartial("carregaFiliacoes", array(’model’=>$model), false, true);

7 Yii::app()->clientscript->scriptMap[’jquery.js’] = true;

8 }

The code of Listing 12.5 presents a function to:

1. disable jQuery:

Yii::app()->clientscript->scriptMap[’jquery.js’] = false;

2. render a view, not rendering the entire layout:

$this->renderPartial("carregaFiliacoes",..., false, true);.

12.3 SGPE, a DIS to populate the bdME Database 119

The two last parameters of the renderPartial function serve to control

whether or not the result is returned or displayed to end users. So, this

could be used to produce some solutions on Ajax/jQuery requests;

3. enable jQuery:

Yii::app()->clientscript->scriptMap[’jquery.js’] = true;

Thus, disabling, rendering a view, and enabling jQuery again, the compo-

nents that are called by Ajax appear correctly. The only thing to do is to

create a separate PHP file with the widget to be rendered and in the Ajax/j-

Query code, call in Ajax success function, the jQuery load method with

the URL to the PHP file of the widget to be rendered.

12.3.2 Summary

The population of bdME through SGPE was done with the cooperation of

the Municipal Archive of Fafe due a project accepted by the Iberarchivos-

ADAI Program. In the application year (2015), 36 projects, among the 17

Iberarchivos-ADAI program countries, were approved. From Portugal, only

four projects were accepted, being this one of the approved works. In addition

to being selected, the project entitled ”Reflexos da emigração no concelho

de Fafe nas décadas de 60 a 80 do séc. XX: um projeto de conservação,

informatização e divulgação” was listed as one of the 4 most relevant9. The

project had as result a website10 to propagate the emigration phenomena

studied.

More than 4000 documents were added to the database (see Figure 12.5).

At this moment, 74% of all documents were inserted into the database. To

achieve the 6400 (100%) documents, the work of populating is already being

done.
9 Accessible at:

http://segib.org/wp-content/uploads/Informe_2015_Iberarchivos.pdf
10 Accessible through the iberarchivos.org: http://bit.ly/2p3tC2S

http://segib.org/wp-content/uploads/Informe_2015_Iberarchivos.pdf
http://bit.ly/2p3tC2S

120Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Next, the OntoME ontology is explained, aiming at describing the emigration

domain.

12.4 OntoME, an ontology for the emigration

domain

This section discusses the use of a Reduced CRM-compatible form ontol-

ogy for the virtual Emigration Museum based on the international standard

for museum ontologies, CIDOC-CRM. This work was already published in

[Martini et al., 2016b].

To extract knowledge from the information of the virtual Emigration Mu-

seum when navigating through it, abstract data models should be used to

conceptualize the emigration documents stored in the relational database

(bdME). In that way, resorting to an ontology (as an abstract layer), the

information contained in those documents can be accessed by the end-users

(the museum visitors) to learn about the emigration phenomena.

After a CIDOC-CRM in-depth analysis (Section 3.4.1), it was possible to

correlate the compatible entities of the ontology with the emigration docu-

mental fond. In that way, to demonstrate how the emigration documents

that belong to the Municipal Archive of Fafe fit in CIDOC-CRM, Figure

12.9 shows an example based on the CIDOC-CRM ontology core (Figure

3.1) instantiated with the information collected from the bdME database

about the emigration movement of a person (José Carlos Magalhães). As in

this work the CIDOC-CRM standard ontology was used, examples are the

best way to demonstrate its use with the bdME instances. Notice that the

use of data from the bdME database is done just for exemplifying the use

of CIDOC-CRM. The relation between the instances stored in the database

and the ontology concepts is done through a mapping, which is presented in

Section 12.5.

12.4 OntoME, an ontology for the emigration domain 121

Figure 12.9: Reduced CRM-Compatible Form instantiation example

As shown in Figure 12.9, the main entity is an event of type movement (E9

Move), which refers to the emigration document that reflects a passport ap-

plication form identified by the number ‘161/63’. E9 Move has four relations

specifying:

when the movement has occurred: described by E52 Time-Span, which

in this case (P78) is identified by ‘1963-05-21’, an E50 Date;

where the emigrant moved to: described by E53 Place, which in this

case (P87) is identified by ‘França’, an E44 Place Appellation;

who emigrated: described by E21 Person named ‘2828624’, which in this

case (P131) is identified by ‘José Carlos Magalhães’, an E82 Actor

Appellation. E21 Person has a type to identify its role in E9 Move. So

person ‘2828624’ (P2) has type ‘Emigrant’;

who carried out 11: described by E21 Person named ‘65’, which in this

case (P131) is identified by ‘Fonderies de Sens’, an E82 Actor Appel-

11 Notice that exist other objects related to this same property, with the di↵erence in

122Case Study 1 – Emigration Documents belonging to Fafe’s Archive

lation. E21 Person has a type to identify its role in E9 Move. So

person ‘65’ (P2) has type ‘Contractor’. Notice that it is not possible

to determine, from the sources, whether the contractor is a person or

a company (E74 Group). So, it is always described as an E21 Person.

Aiming at bridging the gap between bdME and OntoME, Section 12.5 presents

the OBDA mapping developed.

12.5 Bridging the gap between bdME and

OntoME

The Semantic Web aims at building a Web where data is enriched with

meaningful annotations. In other words, data is semantically organized in

such a way that both human and machine can understand and query it,

aiming at the creation of dynamic Web pages.

Ontologies, as a keystone of the Semantic Web, have gained an ample accep-

tance as an information model, which can be used for several purposes, such

as information retrieval in the Web. However, data is normally stored in

databases, due to their acceptance based on their adaptability, e↵ectiveness,

and performance for representing and managing data, but they also present

various problems in the Semantic Web context, because data is not semanti-

cally annotated [Martinez-Cruz et al., 2012]. To allow a sustainable growth

of an ontology, e�cient persistent storage of ontology concepts and data is

essential [Gali et al., 2004].

Aiming at retrieving rich results in the sense of meaning, several ways of

relating databases with ontologies have emerged. This section presents a

mapping – with the aid of a framework (Ontop) – as a solution for the

communication problem between the bdME relational database, presented

the E55 Type. In this project there are types like: who intermediates the emigration
movement (the intermedary); who is calling the emigrant (the caller); etc.

12.5 Bridging the gap between bdME and OntoME 123

in Section 12.2, and the ontology of the Emigration Museum (OntoME),

presented in Section 12.4, which describes the Cultural Heritage domain.

To better explain the mapping work done, Subsection 12.5.1 presents an

example of instances from bdME and an example of the OntoME ontology

schema to describe the bdME example data (Table 12.1). These examples

serve as a basis to illustrate the OBDA mapping that will be presented in

Subsection 12.5.2.

12.5.1 bdME data and OntoME schema

An example of the data contained in bdME is shown in Table 12.1. This

dataset excerpt will be used to demonstrate the mapping in Subsection 12.5.2.

Table 12.1: “identificacaoEmigrante”, “filiacao”, and “localidade” tables

identificacaoEmigrante

idEmigrante nome dtNasc idFiliacao idNaturalidade

713204 Ańıbal de Castro 1926-10-30 265 30712

720807 Lucinda Ribeiro 1935-07-29 37 30728

2665155 Manuel Vaz 1924-03-26 3 30717

2828624 José Carlos Magalhães 1944-09-27 161 30712

filiacao

idFiliacao nomePai nomeMae

3 Júlio Vaz Virǵınia Delgado

37 Júlio Ribeiro Maria Nogueira

161 Serafim de Magalhães Felismina de Freitas

265 – Rosa de Castro

localidade

idLocalidade freguesia concelho distrito

30712 Fornelos Fafe Braga

30717 Monte Fafe Braga

30728 São Gens Fafe Braga

Table 12.1 shows three tables of bdME that describe the data about the em-

igrant’s identification (identificacaoEmigrante). The identificacaoEmigrante

table comprises the identification number (idEmigrante), name (nome), birth-

date (dtNasc), and two foreign keys that are related to the filiation (filiacao

table) referenced by idFiliacao and birthplace (localidade table) referenced

by idNaturalidade.

124Case Study 1 – Emigration Documents belonging to Fafe’s Archive

So, for instance, the emigrant identified by 2665155 has name Manuel Vaz,

his birthdate is 1924-03-26 and has parents (filiation) identified by 3 – which

corresponds to father Júlio Vaz and mother Virǵınia Delgado from “filiacao”

table – and his birthplace is referenced by 30717 – which corresponds to

Monte parish, Fafe council, and Braga district, that together form a geo-

graphical location.

Looking at Table 12.1, the data can be understood and knowledge can be

infered from that data, but usually, the user has no access to the schema

and data of the databases. According to [Martinez-Cruz et al., 2012], in-

formation contained in databases cannot be semantically annotated. The

authors describe this as “on one hand, the content of these databases is only

shown when a query is performed in the database, and on the other hand,

the semantic description of the database is represented using its schema, of-

ten unavailable or even useless because it can not be explored depending of

the format chosen to represent it”. So, this means that without both the

data and schema, it is di�cult to extract some information from relational

databases.

Taking the data of Table 12.1 as an example, it can be noted that idFiliacao

in identificacaoEmigrante table has values like 3, 37, 161, and 265. Those

values are references to filiacao table. The value 3, for instance, is a reference

to a tuple that has two other values: Júlio Vaz and Virǵınia Delgado. Those

data items are sequences of characters and can mean anything. Can those

two values be the father and mother of the emigrant identified by 2665155

or his children?

Looking now to the localidade table, an identifier can be seen (idLocalidade)

and three other fields that correspond to parish (freguesia), council (con-

celho), and district (distrito). Those data items, together, can be understood

as a locality (geographical place) and, indeed, they are, but do those places

correspond to the birthplace or to the emigrant’s home address? What do

they really mean?

As said before, it is di�cult to know the precise meaning of each data item

12.5 Bridging the gap between bdME and OntoME 125

without the association of the related concept chosen in a known vocabulary.

It is only data, not information i.e., without a context, the data meaning can

be messy.

However, having access to the conceptual layer, the user can query the

database through the ontology concepts (known vocabulary) and the system

should reason and translate the query into appropriate database questions

[Poggi et al., 2008]. An example of good questions to answer the previously

mentioned issues are: who are the parents of the emigrant identified by

2665155? What is the birthdate of the emigrant identified by 2665155?

These kind of questions involve concepts (parents, emigrant, and birth) that

are well known, because people share a common vocabulary related to a

specific context, i.e., the ontology vocabulary.

To represent the bdME data of Table 12.1 in OntoME, Figure 12.10 presents

the ontology schema extended to comprise the concepts of the emigration

domain.

E21.1 EmigranteE82 Actor Appellation P131 is identified by

TEXT

P3 has note P2 has type

P98i was bornP98 brought into life

E67 Birth
P4 has time-span

E52 Time-Span

P3 has note
P97 from father P96 by mother P7 took place at

E21.7 Filiacao
E82 Actor Appellation

P131 is identified by

P3 has note P2 has type

E53 Place

P89 falls within

E53.1 FreguesiaE44 Place Appellation
P87 is identified by

P3 has note P89 falls within

E53.2 Concelho

P89 falls within

E53.3 Distrito

E21.8 Conjuge

E74.1 Couple

P107i is current or
former member of

P2 has type

P152 has parent

TEXT

TEXT

TEXT TEXT

TEXT

TEXT

P107 has current or
former member

Figure 12.10: Example describing the OntoME concepts for the emigrant’s
birth event

126Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure 12.10 illustrates the birth of an emigrant, linking the birth event (E67

Birth) to the other related entities:

• E21.1 Emigrante: who was born;

• E21.1 Filiacao: mother and father;

• E53 Place: the birthplace;

• E52 Time-Span: the birthdate (can include the time).

The ontology schema presented in Figure 12.10 has seven extended classes,

namely (1) E21.1 Emigrante, (2) E21.7 Filiacao, and (3) E21.8 Conjuge,

which are subclasses of E21 Person; (4) E74.1 Couple, that is subclass of

E74 Group; (5) E53.1 Freguesia, (6) E53.2 Concelho, and (7) E53.3 Distrito,

which are subclasses of E53 Place.

According to the Definition of the CIDOC Conceptual Reference Model

(available at: http://www.cidoc-crm.org/html/5.0.4/cidoc-crm.html#

_Toc310250800), “the CRM is intended to focus on the high-level entities

and relationships needed to describe data structures. Consequently, it does

not specialize entities any further than is required for this immediate pur-

pose. However, entities in the isA hierarchy of the CRM may by specialized

into any number of sub entities”. This explains the use of the property P2

has type, serving as a label for the specialization.

Using the schema of Figure 12.10 and the data of Table 12.1, Subsection

12.5.2 points out the mapping between bdME and OntoME.

12.5.2 bdME2OntoME Mapping

The main purpose of creating a pavement between the repository and the

ontology is to query the data layer (sources) through a conceptual layer.

Ontology-Based Data Access (OBDA) is a paradigm that provides semantic

access to databases by means of ontologies [Kogalovsky, 2012].

http://www.cidoc-crm.org/html/5.0.4/cidoc-crm.html#_Toc310250800
http://www.cidoc-crm.org/html/5.0.4/cidoc-crm.html#_Toc310250800

12.5 Bridging the gap between bdME and OntoME 127

OBDA has various attractive features, many of them have been already

proved e↵ective in managing complex information systems [Lenzerini, 2011].

In OBDA, an abstract layer exists as an ontology, which defines a shared

vocabulary of a specific domain. OBDA hides the database repository struc-

ture, and with this, it can enrich incomplete data with background knowledge

[Kontchakov et al., 2014].

OBDA is based on a three-level architecture established by an ontology (the

main component and a formal description of the domain of interest), data

sources, and the mappings linking the first two [Lenzerini, 2011].

So, to provide the Curator with access to the factual data in the database

through the lens of the ontology, this subsection details the developed map-

ping between the bdME database and the OntoME ontology using the Ontop

framework. In that way, the user can access the source through the OntoME’s

vocabulary.

The Ontop mapping needs to connect the classes and properties (datatype

and object properties) of the ontology with views (SQL) over the repository’s

data via a specification, as shown in Listing 12.6.

Listing 12.6 presents the mapping declarations for the bdME identifica-

caoEmigrante, filiacao, and localidade tables previously shown in Table 12.1.

The specification of the mapping is composed of one or more mapping ax-

ioms12 that intend to transform the repository’s data into a set of RDF

triples. An axiom has three fields:

• mappingId : a string that identifies the mapping axiom;

• target : an ontology triple template (subject, predicate, object) which

references column names used in the database (source) query through

placeholders (terms between curly brackets);

12 More about the mapping axioms:
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

128Case Study 1 – Emigration Documents belonging to Fafe’s Archive

• source: a SQL query over the database, which should contain the col-

umn names used in the target’s placeholders.

Listing 12.6: Mapping of bdME “identificacaoEmigrante”, “filiacao”, and

“localidade” tables
1 [PrefixDeclaration]

2 ...

3 [SourceDeclaration]

4 ...

5 [MappingDeclaration] @Collection [[

6

7 mappingId E21.1 Emigrante

8 target :URI/Emigrante#{idEmigrante} a :E21.1 Emigrante ;

9 :P3 has note {idEmigrante} ;

10 :P131 is identified by :URI/nomeEmigrante#{idEmigrante} ;

11 :P98i was born :URI/nascimentoEmigrante#{idEmigrante} ;

12 :P107 is current or former member of :URI/Couple#{idEmigrante} ;

13 source SELECT idEmigrante FROM identificacaoEmigrante

14

15 mappingId EmigranteAppellation

16 target :URI/nomeEmigrante#{idEmigrante} a :E82 Actor Appellation ;

17 :P3 has note {nome} ;

18 :P2 has type “Emigrante” ;

19 source SELECT idEmigrante, nome FROM identificacaoEmigrante

20

21 mappingId NascimentoEmigrante

22 target :URI/nascimentoEmigrante#{idEmigrante} a :E67 Birth ;

23 :P4 has time-span :URI/dataNascimentoEmigrante#{dtNasc} ;

24 :P96 by mother :URI/Filiacao#{idFiliacao} ;

25 :P97 from father :URI/Filiacao#{idFiliacao} ;

26 :P98 brought into life :URI/Emigrante#{idEmigrante} ;

27 :P7 took place at :URI/Naturalidade#{idLocalidade} ;

28 source SELECT idEmigrante, dtNasc, idFiliacao, idNaturalidade as idLocalidade FROM identificacaoEmigrante

29

30 //other mapping rules ...

31]]

As already mentioned in Section 10.1, the patterns found in the mapping

axioms shall be expanded to new rules composed of mappingId, target, and

source. So the other mapping axioms related to the placeholders with the

URI13 word (e.g. :URI/Filiacao#{idFiliacao}, etc.) must be done in the

same OBDA file.

In addition to the mapping declaration of the OBDA model, there are two

other sections for declaring the prefixes ([PrefixDeclaration]) and the

source ([SourceDeclaration]) needed by the mapping statement. This

should be done before the [MappingDeclaration] section (see Listing 12.6).

13 Notice that the use of the URI word in this mapping collection was decision of the
author.

12.5 Bridging the gap between bdME and OntoME 129

To better illustrate the mapping axioms, Figure 12.11 presents the same

mapping declarations of Listing 12.6, but in a graphical format.

rdf:type

rdf:type

rdf:type

E21.1 EmigranteE82 Actor Appellation P131 is identified by
nomeEmigrante#{idEmigrante} Emigrante#{idEmigrante}

{nome}
P3 has note

“Emigrante”
P2 has type

rdf:type

P98i was bornP98 brought into life

E67 Birth
nascimentoEmigrante#{idEmigrante}

P4 has time-span
E52 Time-Span

dataNascimentoEmigrante{dtNasc}

{dtNasc}

P3 has note

rdf:type

P97 from father P96 by mother P7 took place at

E21.7 Filiacao
Filiacao#{idFiliacao}

rdf:type
E82 Actor Appellation

P131 is identified by

pai/{idFiliacao}

{nomePai}

P3 has note

“Pai”

P2 has type

mae/{idFiliacao}

{nomeMae} “Mae”

E53 Place
Naturalidade#{idLocalidade}

rdf:type

P89 falls within

E53.1 Freguesia
freguesia/{idLocalidade}

E44 Place Appellation
P87 is identified by

nomeFreguesia/{idLocalidade}

{freguesia}

P3 has note

P89 falls within

rdf:typeE53.2 Concelho
concelho/{idLocalidade}

P89 falls within

nomeConcelho/{idLocalidade}
nomeDistrito/{idLocalidade}

{concelho}

{distrito}

rdf:type

rdf:type

rdf:type

E53.3 Distrito
distrito/{idLocalidade}

E21.8 Conjuge
Conjuge#{idEmigrante}

rdf:type

E74.1 Couple
Couple#{idEmigrante}

rdf:type

P107i is current or
former member of

P2 has type
“Casal”

“Conjuge”{nomeConj}

P152 has parent

nomeConjuge#{idEmigrante}

P107 has current or
former member

{idEmigrante}
P3 has note

Figure 12.11: Graphical example of the mapping axioms from Listing 12.6

The documental fond can be described in di↵erent ways. In this example,

the OntoME ontology was extended to cover seven new domain concepts.

Besides, the property P2 has type, a form of specialization, was used.

Th next section presents the CaVaDSL specification to describe the Emigration

virtual LS based on the OntoME ontology’s vocabulary.

130Case Study 1 – Emigration Documents belonging to Fafe’s Archive

12.6 A CaVaDSL specification for the Emigra-

tion virtual Learning Space

After getting all the above prerequisites to specify a virtual Learning Space,

i.e., after building the bdME relational database (Section 12.2), the OntoME

ontology (Section 12.4) and the mapping (Section 12.5) between them, it is

time to write the specification of the Emigration virtual Learning Space in

CaVaDSL (file named mef.cava). That specification will be presented in this

section.

As this work was done in cooperation with the Municipal Archive of Fafe,

the responsible archivist Mónica Guimarães specified the Emigration virtual

LS according to her experience in the emigration documents based on the

OntoME’s vocabulary and the CaVaDSL rules.

The outcome of this specification, for this specific domain, was built up

from four separated blocks, following the structure of CaVaDSL (described in

Chapter 9).

The main configuration (mainconfig element):

Listing 12.7: mainconfig element
1 mainconfig [

2 LS title: “Museu da Emigraç~ao de Fafe”,

3 about [

4 p: “A emigraç~ao sempre foi e continua a ser uma das

5 constantes da História de Portugal, desde a epopeia

6 das Descobertas à actualidade.”,

7 p: “Todavia, apesar das raı́zes multisseculares,

8 apenas a partir da segunda metade do século XIX e após

9 a independência do Brasil (1822) e a emergência do

10 Liberalismo, esse movimento humano, a partir de Portugal,

11 se intensifica, sobretudo rumo a Terras de Vera Cruz.”,

12 p: “A causa geral do fenómeno migratório num paı́s de

13 ‘estrutura agrária ainda rotineira ou insuficientemente

14 inovadora’, como o nosso, era ‘o baixo nı́vel económico da

15 populaç~ao rural’ (Joel Serr~ao), o crescimento demasiado lento

16 e incapaz de acorrer às necessidades da populaç~ao. Dadas as

17 facilidades concedidas pelas vias férreas de ligaç~ao ao litoral

18 e aos portos de embarque para aqueles que almejavam por uma

19 ascens~ao rápida do ponto de vista económico, a emigraç~ao foi

20 engrossando, mormente para o outro lado do Atlântico, após

21 um fenómeno que havia de ser decisivo na mudança dos

22 acontecimentos: a extinç~ao da escravatura e a necessidade

12.6 A CaVaDSL specification for the Emigration virtual LS 131

23 de atrair m~ao-de-obra agrı́cola para a substituir. Porém, seria

24 nas cidades e nas actividades mercantis, sobretudo no comércio

25 a retalho, que muitos ‘brasileiros de torna viagem’ enriqueceriam.”,

26]

27 carousel [

28 interval: 8,

29 images [

30 caption: “Centro da Vila de Fafe”, src: “carousel1.png”,

31 caption: “Passaporte”, src: “carousel2.png”, active,

32 caption: “Registo de emigrantes”, src: “carousel3.png”,

33 caption: “Museu da Emigraç~ao de Fafe”, src: “carousel4.png”,

34]

35]

36]

The mainconfig element describes the most generic characteristics of the

virtual LS. The specification of Listing 12.7 describes the title and the three

paragraphs about the virtual LS domain (emigration) that will be designed

in the entrance room (the website homepage). Additionally, a carousel of

images was defined. This carousel, in addition to the caption and source of

each image, also sets a time interval (in seconds) for the transition between

each of them. The “active” value defines the initial image in the carousel

when the main page of the virtual LS is loaded.

After describing the main configuration of the virtual Learning Space, it is

time to define the header (menu).

The header (menu element):

Listing 12.8: menu element
1 menu [

2 brand: “Museu da Emigraç~ao de Fafe”,

3 background color: crimson,

4 foreground color: white,

5 behavior: fixed,

6 options [

7 label: “Exibiç~oes”, dropdown [

8 dropdown label: “Todas”, url: “exhibitions”,

9 dropdown label: “Permanentes”, url: “permanent exhibitions”,

10 dropdown label: “Temporárias”, url: “temporary exhibitions”,

11 dropdown label: “Especiais”, url: “especial exhibitions”,

12 dropdown label: “Futuras”, url: “future exhibitions”,

13]

14 label: “Sobre”, url: “about”, extension: php,

15]

16]

Themenu specification shown in Listing 12.8 specifies the header of the entire

virtual Learning Space. This component described the brand, the colors, the

132Case Study 1 – Emigration Documents belonging to Fafe’s Archive

behavior and the options of the menu (dropdown and simple). Notice that

the URL must be defined, so that the generator (CaVagen) can create the

right pages to jump to when the option is selected.

After specifying the header, the content (a list of exhibitions) is described in

Listing 12.9.

The content (exhibitions element):

Listing 12.9: exhibitions element
1 exhibitions [

2 exhibition [

3 title: “Reflexos da Emigraç~ao no concelho de Fafe nas décadas,

4 de 60 a 80 do século XX”,

5 short description: “Mostramos nessa sala de exibiç~ao

6 a lista de emigrantes, os quais emigraram

7 para diversos destinos, dentre eles:

8 França, Brasil, África, Canadá, etc.

9 Nessa sala de exibiç~ao você poderá

10 encontrar os dados demográficos

11 de cada emigrante.”,

12 icon: “file-o”,

13 additional info [

14 title: “4000+”,

15 description: “Processos”,

16]

17 behavior: expanded,

18 type: permanent,

19 E21.1 Emigrante->all(“Listagem de Emigrantes”, “mef.obda”,

20 “http://semanticweb.org/rgm/2018/ontoME/”)”

21 [“Identificaç~ao do Emigrante”,

22 headerOfEachElement:“Nome do Emigrante”,

23 “Data de Nascimento”, “M~ae”, “Pai”,

24 “Freguesia”, “Concelho”, “Distrito”,

25 “Nome do Cônjuge”],

26]

27 # other exhibitions . . .

28]

The content of a CaVa virtual Learning Space is specified through a list of

exhibitions. Each exhibition is declared inside the exhibitions element. In

this particular case, there is only one exhibition specified. It is a permanent

type exhibition room. The referred description includes the definition of

the exhibition title, an exhibition short description, the icon to be used, the

additional information, and the expected component (accordion) behavior,

that in this case is “expanded”.

In addition to the static content of this exhibition room, a query operator

12.6 A CaVaDSL specification for the Emigration virtual LS 133

(all()) was provided. The concept passed to it is E21.1 Emigrante, which

means that the CaVa system needs to search for all occurrences of the spec-

ified concept in the bdME instances based on the mappings described in

Subsection 12.5.2. The parameters are the title of the instances list, the

OBDA mapping file, and the OntoME ontology. As optional, if the order

of the queried fields is known, they can be specified, as seen in the list of

labels inside the brackets after the third parameter. If the list is not speci-

fied, the CaVa system will take the property annotations (rdfs:label) of the

ontology (e.g. P131 is identified by with the annotation “is identified by”)

as labels for the final rendering of the virtual LS. If there is no annotation,

the name of the property is taken. To conclude the virtual Learning Space

with all elements, the footer is specified in Listing 12.10.

The footer (footer element):

Listing 12.10: footer element
1 footer [

2 images [

3 image: “cava logo.png”,

4 alignment: right,

5]

6 format date: “Y”,

7 developer [

8 name: “Ricardo Giuliani Martini”,

9 alignment: left,

10]

11 behavior: fixed,

12 style: extended [

13 title: “Redes Sociais”, subtitle: “veja também”[

14 label: “facebook/municipiofafe”,

15 link: “https://www.facebook.com/municipiofafe/”,

16 icon: “facebook”, icon color: blue,

17]

18 title: “Parceiros”, subtitle: “visite”[

19 label: “Museu das Migraç~oes e das Comunidades”,

20 link: “http://www.museu-emigrantes.org/”,

21 icon: “institution”, icon color: black,

22]

23 title: “Municı́pio de Fafe”,

24 subtitle: “Avenida 5 de Outubro - 4824-501 Fafe”[

25 label: “TELF. 253 700 400”,

26 link: “tel:+351253700400”,

27 icon: “phone”, icon color: black,

28

29 label: “TELF. 253 700 409”,

30 link: “tel:+351253700409”,

31 icon: “fax”, icon color: black,

32

33 label: “geral@cm-fafe.pt”,

34 link: “mailto:geral@cm-fafe.pt”,

134Case Study 1 – Emigration Documents belonging to Fafe’s Archive

35 icon: “envelope”, icon color: black,

36]

37 title: “Arquivo Municipal de Fafe”,

38 subtitle: “Rua Major Miguel Ferreira - 4820 Fafe”[

39 label: “TELF. 253 700 470”,

40 link: “tel:+351253700470”,

41 icon: “phone”, icon color: black,

42

43 label: “arquivo@cm-fafe.pt”,

44 link: “mailto:arquivo@cm-fafe.pt”,

45 icon: “envelope”, icon color: black,

46]

47]

48]

The footer element shown in Listing 12.10 describes the footer of the whole

virtual Learning Space. This footer is composed of the CaVa logo aligned on

the right side, the current year, the developer name aligned on the left side,

and a behavior. The style of the footer was set up as extended, which means

that the element contains more options. In this case, the options were defined

as “Redes Sociais” (Social Networks), “Parceiros” (Partners), “Munićıpio de

Fafe” (the address and contacts of the Fafe county), and “Arquivo Municipal

de Fafe” (the address and contacts of the Municipal Archive of Fafe).

Note that the four blocks described must be composed into a unique .cava

file in the order that they were specified in this section.

The processing of the CaVaDSL specification here described is done by CaVagen,

which is explained in Section 12.7.

12.7 CaVagen applied to the automatic gener-

ation of the Emigration virtual LS

As the CaVaDSL specification (mef.cava) for the emigration virtual LS is writ-

ten, this section reports on the processing of such specification through the

processors of CaVagen already presented in Chapter 10, aiming at generating

the final virtual LS.

Based on the workflow presented in Figure 10.2, after step 1 is done (Section

12.6), it is needed to transform the input (mef.cava) into the outputs gen-

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 135

erated by step 2 and step 3 of the CaVa workflow. These actions should be

done with the aid of CaVagen. Next, the gradual processing of mef.cava, until

reaching the final virtual Learning Space about the emigration phenomena

in Portugal, is explained.

The first task to be performed is to feed CaVastructure with the mef.cava file as

input (represented by the edge (1) of Figure 10.3). The abstract CaVastructure

as sketched in Figure 10.3 was realized in this concrete case study by the

following implementation:

• CaVaDSL Specification 7! mef.cava file;

• CaVagrammar Processor 7! ANTLR;

• CaVa State file 7! plain text (.txt);

Notice that CaVagrammar, a Context Free Grammar (CFG) listed in Appendix

A.1 is fixed (always the same) and is not instantiated in each project.

Figure 12.12 depicts CaVastructure in a concrete form, presenting the filetypes

and technologies used.

Figure 12.12: Concrete instance of the CaVastructure processor schema

It is important to note that CaVagrammar– ANTLR version – has no embedded

actions (it is a pure CFG). This results in a clean grammar (i.e. easy to read)

that keeps the application-specific code out of the grammar [Parr, 2013]. This

136Case Study 1 – Emigration Documents belonging to Fafe’s Archive

approach supports multiple uses, independent of the context and implemen-

tation (in this case the set of application generators (CaVagen) was developed

based on the concept of ANTLR Listeners (see more in [Parr, 2013])).

So, to recognize themef.cava input, ANTLR needs to process the CaVagrammar

to generate the CaVastructure skeleton. The generated skeleton is composed of

a Java listeners Interface (named CavaListener) with all methods based on

the CaVagrammar rules, and an empty implementation of the CavaListener

(named CavaBaseListener), which is extended with the creation of a new

class (CavaInterfaceListener) that implements this bare bone code, over-

riding the original methods to deal with a subset of the available listeners.

The CaVastructure processor, when recognizing the mef.cava input file, assigns

and executes the defined actions of the corresponding listener for each pro-

duction rule of CaVagrammar. To exemplify, at the beginning of the input

recognition, the method enterCava() is triggered, because it is the initial

rule of CaVagrammar. This listener creates the header, content, and footer

files to be filled by each responsible listener.

After the main files are created, the next production rule to be recognized is

‘mainConfig’, which has an associated listener, called enterMainConfig().

Thus, recognizing each production rule and executing the respective listener

actions, the final virtual Learning Space is generated.

The generation of code through listeners for the ‘mainConfig’ rule is shown

in Listing 12.11. Note that there are other code blocks to be generated,

depending on the remaining methods to be executed. The listeners presented

in Listing 12.11 are only an excerpt of the generation of content (PHP code)

for the ‘mainconfig’ element of CaVaDSL. As the ‘mainconfig’ element is

considered content of the virtual LS (di↵erent from the header and footer),

a file named learningSpaceAndExhibitionSettings.php was created to

handle it and the exhibitions.

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 137

Listing 12.11: The implementation of the ‘mainConfig’ production rule meth-

ods of the CavaInterfaceListener class
1 public class CavaInterfaceListener extends CavaBaseListener {

2 @Override public void enterMainConfig(CavaParser.MainConfigContext ctx) {

3 lsAndExhibitionSettings += "\t$data = array(\n";

4 }

5

6 @Override public void enterLearningSpaceTitle (CavaParser.LearningSpaceTitleContext ctx) {

7 lsAndExhibitionSettings += "\t\t’lsTitle’ => ";

8 lsAndExhibitionSettings += ctx.TEXT().getText() + ",\n";

9 }

10

11 @Override public void enterLearningSpaceAbout (CavaParser.LearningSpaceAboutContext ctx) {

12 lsAndExhibitionSettings += "\t\t’about’ => array(\n";

13 }

14

15 //other overriding methods ...

16 }

The method enterMainConfig() concatenates the string “\t$data = array(\n”
to the variable lsAndExhibitionSettings. The listener enterLearningSpaceTi-

tle(), in addition to concatenate the ‘lsTitle =>’ string to the lsAndExhi-

bitionSettings, it asks the context object for the string TEXT() token being

matched by the parser for the invocation rule LearningSpaceTitle (in this

case the text is “Museu da Emigração de Fafe”). According to [Parr, 2013],

“context objects record everything that happens during the recognition of

a rule”. A similar process is executed for the other overridden methods for

generating the Static LS Scripts.

After parsing all the mef.cava input file (excluding the exhibitions query

operators), CaVastructure generates the ‘Static LS Scripts’ for the Emigration

virtual Learning Space.

Listing 12.12 shows an example of an PHP output file, learningSpaceAnd

ExhibitionSettings.php created from the CaVaDSL specification of Listing

12.7 using ANTLR Listeners, like the excerpt in Listing 12.11.

138Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Listing 12.12: Generated PHP code for creating the mainconfig element ac-

cording to mef.cava
1 <?php

2 $data = array(

3 ’lsTitle’=>"Museu da Emigraç~ao de Fafe",

4 ’about’=>array(

5 array(’p’=>"A emigraç~ao sempre foi e continua a ser ..."),

6 array(’p’=>"Todavia, apesar das raı́zes ..."),

7 array(’p’=>"A causa geral do fenómeno migratório num ..."),

8),

9 ’carousel’=>array(

10 ’active’=>"true",

11 ’interval’=>8000,

12 ’images’=>array(

13 array(’caption’=>"Centro da Vila de Fafe", ’src’=>"carousel1.png", ’active’=>"false"),

14 array(’caption’=>"Passaporte", ’src’=>"carousel2.png", ’active’=>"true"),

15 array(’caption’=>"Registo de emigrantes", ’src’=>"carousel3.png", ’active’=>"false"),

16 array(’caption’=>"Museu da Emigraç~ao de Fafe", ’src’=>"carousel4.png", ’active’=>"false"),

17),

18),

19 //continues with the exhibitions list element PHP code ...

However, when CaVastructure recognizes the query operator in the exhibitions

list element, it reads and stores the used concept as a CaVa State file (con-

cept.txt) to recognize later that concept on the mappings specification created

during step 2 (Figure 10.2) of the CaVa workflow.

When the operator all() is recognized in the specification of a virtual LS,

as seen in the statement “E21.1 Emigrante->all()[]” in line 19 of Listing

12.9, the Java method enterAll() (associated to the respective grammar rule)

is executed, calling the generateSPARQL() method. This method receives

two parameters:

1. the first one specifies the mapping or triples file, depending on whether

the digital repository is a relational database (as it happens to be in this

case study) or a triple store. For this case study, the OBDA mapping

file (mef.obda) is referenced;

2. the second one defines the concept recognized as the left hand side of

the statement. In this case, the concept E21.1 Emigrante.

These two parameters are recognized through the context reached from the

mappingOrTriplesFileName() method of the parametersAll() listener, that

in this case is CavaParser.AllContext.

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 139

After detecting the filetype of the first parameter, generateSPARQL() calls

the method mainCaVaSPARQL(), which is represented by the node with

number (2) in Figure 12.12 (step 2 in Figure 10.2). It is the main method

related to the processors that generate and assemble the queries in the CaVa

system. As the data of this case study is stored in a relational database, the

CaVaqueries processor is committed to performing this task.

The input of the CaVaqueries generator must be a mapping file, which in this

case is the mef.obda file described in Listing 12.6. The abstract CaVaqueries

processor outlined in Figure 10.4 is realized in this case study by the following

implementation:

• mappings specification 7! mef.obda file;

• CaVaqueries Processor 7! ANTLR;

• CaVa State 7! concept.txt file;

• Ontology 7! OntoME;

• Queries 7! SPARQL (.rq).

Notice that the mapping grammar, a CFG grammar (cavaSPARQL) devel-

oped specially for this project and presented in Appendix A.2, belongs to the

CaVa framework, but is not instantiated (it is a fixed element).

The filetypes and technologies used for the CaVaqueries processor are depicted

in Figure 12.13.

140Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure 12.13: Concrete instance of the CaVaqueries processor schema

Like CaVagrammar, the OBDA Ontop grammar (named cavaSPARQL) is an

ANTLR version once again without embedded semantic actions. As already

said, along this PhD project, it was followed, as much as possible, a policy of

reuse of well-defined grammars. In this specific case, for the OBDA format,

as there is no access to its grammar, it was decided to create a new one

to recognize the OBDA mapping axioms. This new grammar was created

based on a study over several OBDA example files available from the Ontop

project14.

The main production rules of OBDA Ontop grammar are shown in Listing

12.13.

Listing 12.13: Main production rules of cavaSPARQL grammar
1 grammar cavaSPARQL ;

2 cavaSPARQL: (mappingid comma target)+ ;

3 target: uri relation object (relations)* period ;

Similar activities performed to generate the skeleton for the CaVastructure pro-

cessor are used for CaVaqueries. The skeleton is composed of a Java Inter-

face (CavaSPARQLListener) and the empty implementation of the Interface

(named CavaSPARQLBaseListener), which is extended with the creation of

a new class, named cavaSPARQLInterfaceListener, which implements the

empty base class.

14 Website and github available at: https://github.com/ontop

https://github.com/ontop

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 141

The CaVaqueries generator recognizes the mef.obda input file and executes the

right actions of the corresponding listener for each production rule of the

cavaSPARQL grammar until reaching the final SPARQL query file.

As already reported in Chapter 10 (section about CaVaqueries), five steps are

needed to generate the query:

1. Searches for occurrences of the ontology concept (like in line 20 of

Listing 12.9 – E21.1 Emigrante) in the mapping file mef.obda through

a method called checkConceptFile(String pConcept);

2. Expands each mapping axiom related to the query imposed inmef.cava;

3. Stores all the mapping axioms related to the desired query in a Java

List, expanded in task 2;

4. Transforms each placeholder related to a literal in a SELECT clause

variable with name ?p 0, ?p 1, depending on how many literals are

found; Also, transforms each placeholder (concept+literal) in a new

variable of the WHERE clause;

5. Creates and writes the generated SPARQL query file.

For the expansion step of task 2, from the first mapping axiom found (in this

case the mapping rule with mappingId E21.1 Emigrante of Listing 12.6), it

is necessary to extend each placeholder that is related to a concept + literal,

i.e., all the placeholders with the URI word. The result is a Java List. The

content of this list is shown in Table 12.2.

142Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Table 12.2: Expansion of the mapping axioms to create the SPARQL query

Expanding mapping rules

Initial var
to be derived

rdftype Concept Object Property
var to be derived

or final value

?Emigrante a E21.1 Emigrante P3 has note ?p 0

- - - P131 is identified by ?nomeEmigrante

- - - P98i was born ?nascimentoEmigrante

- - -

P107i is current or

former member of

?Couple

?nomeEmigrante a E82 Actor Appellation P3 has note ?p 1

- - - P2 has type “Emigrante”

?nascimentoEmigrante a E67 Birth P4 has time-span ?dataNascimentoEmigrante

- - - P96 by mother ?mae

- - - P97 from father ?pai

- - - P98 brought into life ?Emigrante

- - - P7 took place at ?Naturalidade

?dataNascimentoEmigrante a E52 Time-Span P3 has note ?p 2

?mae a E82 Actor Appellation P3 has note ?p 3

- - - P2 has type “Mae”

?pai a E82 Actor Appellation P3 has note ?p 4

- - - P2 has type “Pai”

?Naturalidade a E53 Place P89 falls within ?freguesia

?freguesia a E53.1 Freguesia P87 is identified by ?nomeFreguesia

- - - P89 falls within ?concelho

?nomeFreguesia a E44 Place Apellation P3 has note ?p 5

?concelho a E53.2 Concelho P87 is identified by ?nomeConcelho

- - - P89 falls within ?distrito

?nomeConcelho a E44 Place Apellation P3 has note ?p 6

?distrito a E53.3 Distrito P87 is identified by ?nomeDistrito

?nomeDistrito a E44 Place Apellation P3 has note ?p 7

?Couple a E74.1 Couple

P107 has current or

former member

?Conjuge

- - - P2 has type “Casal”

?Conjuge a E21.8 Conjuge P131 is identified by ?nomeConjuge

?nomeConjuge a E82 Actor Apellation P3 has note ?p 8

Notice that, from the first group of rules (four initial lines of Table 12.2),

each “var to be derived” value (excluding the literal values denoted by the

SELECT clause variables ?p X) became a new “initial var to be derived”.

This configures a top-down derivation of the mapping axioms, expanding all

of them until achieving the literals (final values). Seeking for not having an

infinite loop in the expand task, the rule in red is not executed. This rule is

related to the inverse object property.

After expanding and storing the mapping axioms, the fourth step is to get

the variables of the SELECT and WHERE clauses. Two listeners handle

this situation. Listing 12.14 presents the method enterPlaceholder() to

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 143

get the variables of the SELECT clause and Listing 12.15 shows the listener

enterUri() aiming at getting the variables of the WHERE clause.

Listing 12.14: Listener that performs the SPARQL SELECT clause variables

generation
1 @Override public void enterPlaceholder(...PlaceholderContext ctx) {

2 mappings.get(i).add("?p___"+selectVarsCounter);

3 mappings.get(i).add("selectable");

4 //selectable is set just for control

5 }

Listing 12.15: Listener that performs the SPARQL WHERE clause variables

generation
1 @Override public void enterUri(CavaSPARQLParser.UriContext ctx) {

2 mappings.get(i).add(ctx.getText());

3 mappings.get(i).add("?"+ctx.VALUE().get(0).getText());

4 }

As the listeners access the input file token by token based on the cavaS-

PARQL grammar (Listing 12.13), the methods in Listing 12.14 and 12.15

only care about getting the text of a specific production (in this case, URI

and Placeholder) of the grammar. The index “0” (line 3) in Listing 12.15

refers to the text between “:” and “#” in the mapping file (mef.obda).

After having the two SPARQL clauses defined, it is time to concatenate

them, forming the correct statements (syntax) of SPARQL queries. The

same is done with the prefixes of the query. They can be found in the

[prefixDeclaration] section of the mappings file and they are placed at the

beginning of the query (.rq) file.

To finish this process, CaVaqueries creates and writes the “.rq” file with all

the content of the strings (prefixes and clauses (SELECT and WHERE)).

The name of each file is given by the “query” string plus the name of the

CaVaDSL operator (in this case all()) and the number of the exhibition room

where the operator was called. As there is only one declared exhibition, the

name of the query file is queryAll1.rq. Listing 12.16 presents the generated

SPARQL query by CaVaqueries.

144Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Listing 12.16: Generated query file fragment – “queryAll1.rq”
1 PREFIX : <http://semanticweb.org/rgm/2018/ontoME/>

2 PREFIX owl: <http://www.w3.org/2002/07/owl#>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?p 0,?p 1,?p 2,?p 3,?p 4,?p 5,?p 6,?p 7,?p 8

7 WHERE {

8 ?Emigrante a :E21.1 Emigrante ;

9 :P3 has note ?p___0 ; :P131 is identified by ?nomeEmigrante ;

10 :P98i was born ?nascimentoEmigrante ;

11 :P107i is current or former member of ?Couple .

12

13 ?nomeEmigrante a :E82 Actor Appellation ;

14 :P3 has note ?p___1 ; :P2 has type "Emigrante" .

15

16 ?nascimentoEmigrante a :E67 Birth ;

17 :P4 has time-span ?dataNascimentoEmigrante ; :P96 by mother ?mae ;

18 :P97 from father ?pai ; :P7 took place at ?Naturalidade .

19

20 ?Couple a :E74.1 Couple ;

21 :P107 has current or former member ?Conjuge ;

22 :P2 has type "Casal" .

23

24 ?dataNascimentoEmigrante a :E52 Time-Span ;

25 :P3 has note ?p___2 .

26

27 ?mae a :E82 Actor Appellation ;

28 :P3 has note ?p___3 ; :P2 has type "Mae" .

29

30 //other graph pattern declarations (triples)...

31 }

Using the abstract CaVarun processor pointed out in Figure 10.5, in this

case study it was transformed into a concrete implementation through the

following map:

• mappings Specification 7! mef.obda file;

• Repository 7! bdME;

• Ontology (TBox) 7! OntoME;

• Queries 7! SPARQL (.rq);

• Query Results 7! JSON (.json);

• CaVarun Processor 7! Quest reasoner;

Figure 12.14 depicts the CaVarun schema with the filetypes and technologies

used.

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 145

Figure 12.14: Concrete instance of the CaVarun processor schema

Assuming the code of Listing 12.6 as the OBDA model (mapping axioms),

the schema of Figure 12.10 as the ontology, and the code of Listing 12.16 as

the query to be executed by the CaVarun processor, its execution is explained

in six steps:

1. Receives as input the mapping axioms (loading an external .obda file

– in this case, “mef.obda”). Listing 12.17 shows the snippet for this

specific action.

Listing 12.17: Code fragment to load an external .obda file
1 OBDADataFactory fac = OBDADataFactoryImpl.getInstance();

2 OBDAModel obdaModel = fac.getOBDAModel();

3 ModelIOManager ioManager = new ModelIOManager(obdaModel);

4 ioManager.load("mef.obda");

2. Receives as input the ontology external IRI (International Resource

Identifier). Listing 12.18 presents the code fragment for this specific

action.

Listing 12.18: Snippet to load an ontology from IRI
1 OWLOntologyManager manager = OWLManager.createOWLOntologyManager();

2 OWLOntology ontology = manager.loadOntology(IRI.create("http://semanticweb.org/rgm/2018/ontoME/"));

3. Prepares the configuration for the Quest instance. The excerpt code of

Listing 12.19 shows the setup for “virtual ABox” mode15 of Quest.

15 Read more at: https://github.com/ontop/ontop/wiki/ObdalibQuestIntro

146Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Listing 12.19: Preparing the configuration for the Quest Instance
1 QuestPreferences preference = new QuestPreferences();

2 preference.setCurrentValueOf(QuestPreferences.ABOX MODE, QuestConstants.VIRTUAL);

4. Creates the instance of Quest reasoner. Listing 12.20 shows up the code

to create the instance of Quest reasoner based on the OBDA model of

Listing 12.17, the configuration for the Quest Instance of Listing 12.19,

and the ontology of Listing 12.18. As this case study uses the MySQL

database, note that the first line of the code sets the Java Database

Connectivity (JDBC) driver.

Listing 12.20: Code to create the instance of Quest reasoner
1 Class.forName("com.mysql.jdbc.Driver").newInstance();

2 QuestOWLFactory factory = new QuestOWLFactory();

3 factory.setOBDAController(obdaModel);

4 factory.setPreferenceHolder(preference);

5 QuestOWL reasoner = (QuestOWL) factory.createReasoner(ontology, new SimpleConfiguration());

5. Prepares the data connection for querying and executes the query. List-

ing 12.21 shows the code for these two particular actions. Note the

“queryString” parameter in the fourth line, which for this case study

is the “queryAll1.rq” file content.

Listing 12.21: Code to prepare the data connection for querying and

query execution
1 QuestOWLConnection conn = reasoner.getConnection();

2 QuestOWLStatement st = conn.createStatement();

3 try {

4 QuestOWLResultSet rs = st.executeTuple(queryString);

5 //queryString is the string related to the content of

6 //the generated query by CaVa system

7

8 //other statements . . .

9 }

6. Writes the SPARQL query execution result set into a JSON file to be

read by the specific exhibition room that called the operator. Listing

12.22 lays out the code fragment to write a JSON file with the query

results. Notice that the fileName parameter (JSON file to store the

results of the query) in line 2 of Listing 12.22 has the same pattern

name of the query name, i.e., “queryAll1.json”.

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 147

Listing 12.22: Code to write the query result into a JSON file
1 try{

2 FileWriter writer = new FileWriter(fileName);

3 JsonGenerator gen = Json.createGenerator(writer);

4 gen.writeStartObject();

5 int indexFirstJSONObject = 0;

6 while (rs.nextRow()) {

7 gen.writeStartObject(Integer.toString(indexFirstJSONObject));

8 for (int idx = 1; idx <= columnSize; idx++) {

9 OWLObject binding = rs.getOWLObject(idx);

10 String val = binding.toString();

11 val = val.replace("\"", "");

12 gen.write(Integer.toString(idx-1), val);

13 }

14 gen.writeEnd();

15 indexFirstJSONObject++;

16 }

17 gen.writeEnd();

18 gen.close();

19 rs.close();

20 } finally {

21 //close connections and resources

22 }

After presenting these six tasks, the exhibition room (Listing 12.25) gets

the JSON result file content (excerpt shown in Listing 12.23) to display the

instances in the virtual LS exhibition room.

Listing 12.23: Excerpt of the JSON result file generated by CaVarun–

“queryAll1.json”
1 {

2 //other JSON objects ...

3 "2227": {

4 "0": "713204",

5 "1": "Anı́bal de Castro",

6 "2": "1926-10-30",

7 "3": "Rosa de Castro",

8 "4": "",

9 "5": "Fornelos",

10 "6": "FAFE",

11 "7": "BRAGA",

12 "8": "Ana de Almeida"

13 },

14 //other JSON objects ...

15 "3005": {

16 "0": "2828624",

17 "1": "José Carlos Magalh~aes",

18 "2": "1944-09-27",

19 "3": "Felismina de Freitas",

20 "4": "Serafim de Magalh~aes",

21 "5": "Fornelos",

22 "6": "FAFE",

23 "7": "BRAGA",

24 "8": ""

25 },

26 //other JSON objects ...

27 "3315": {

28 "0": "9747541",

29 "1": "Laurinda Costa",

148Case Study 1 – Emigration Documents belonging to Fafe’s Archive

30 "2": "1942-09-22",

31 "3": "Felismina Gonçalves",

32 "4": "José da Costa",

33 "5": "Fornelos",

34 "6": "FAFE",

35 "7": "BRAGA",

36 "8": "Américo Fernandes"

37 },

38 //other JSON objects ...

39 }

To get the result presented in Listing 12.23, the exhibition room calls the

command shell exec() passing all the necessary parameters. At this point,

CaVastructure proceeds with the execution and generates the exhibition room

client and server-side files (as the “exhibition1.tpl” file of Listing 12.24 and

“exhibition1.php” of Listing 12.25).

Listing 12.24: Automatically generated template code for an exhibition room

– “exhibition1.tpl”
1 {assign var=accordionID value=1}
2 {assign var=accordionName value=accordion}
3 {assign var=countID value=1}
4 {assign var=indexLabels value=0}
5 <div class="row">

6 <div class="container">

7 <div class="col-lg-12">

8 <div class="ibox float-e-margins {if $data.collapsed eq ’collapsed’}collapsed{/if}">
9 <div class="ibox-title">

10 <h5><i class="fa fa-file-o"></i> Listagem de Emigrantes</h5>

11 <div class="ibox-tools">

12

13 <i class="fa fa-chevron-up"></i>

14

15 </div>

16 </div>

17 <div class="ibox-content">

18 <div class="panel-body">

19 <div class="panel-group" id="accordion">

20 {foreach from=$data item=i key=k}
21 {if $k neq "collapsed" and $k neq "labels"}
22 <div class="panel panel-default">

23 <div class="panel-heading">

24 <h5 class="panel-title">

25 <a data-toggle="collapse" data-parent="#accordion"

26 href="#{$accordionName}{$accordionID}">{$i[’0’]}
27

28 </h5>

29 </div>

30 <div id="{$accordionName}{$accordionID}" class="panel-collapse collapse">

31 {assign var=accordionID value=$accordionID+1}
32 <div class="panel-body">

33 <div class="col-md-12">

34 <div class="row">

35 <div class="col-md-9">

36 <h2 class="font-bold m-b-xs">{$i[’0’]}</h2>
37 </div>

38 </div>

39 {foreach from=$i item=j}
40 {if $j eq ""}

12.7 CaVagen applied to the automatic generation of the Emigration
virtual LS 149

41 {assign var=indexLabels value=$indexLabels+1}
42 {elseif $j neq ""}
43 <div class="row col-md-12">

44 <hr>

45 </div>

46 <div class="row col-md-9">

47 <div class="label">{$data.labels[$indexLabels]}:</div>
48 {assign var=indexLabels value=$indexLabels+1}
49 <dl class="small m-t-md">

50 <dt class="label navy-bg">{$j}</dt>
51 </dl>

52 </div>

53 {/if}
54 {/foreach}
55 {assign var=indexLabels value=0}
56 </div>

57 </div>

58 </div>

59 </div>

60 {/if}
61 {/foreach}
62 </div>

63 </div>

64 </div>

65 </div>

66 </div>

67 </div>

68 </div>

Listing 12.25: Automatically generated PHP code for an exhibition room –

“exhibition1.php”
1 <?php

2 $sparqlQuery = "queryAll1.rq";

3 $sparqlResult = "queryAll1.json";

4 $mappingOrTriplesFile = "mef.obda";

5 $IRIOntology = "http://semanticweb.org/rgm/2018/OntoME/";

6 $jarFilePath = ".../mappingOnto2Database.jar ";

7 shell_exec($jarFilePath . " " . $sparqlQuery . " " . $sparqlResult

8 . " " . $mappingOrTriplesFile . " " . $IRIOntology);

9 $json = file_get_contents($sparqlResult);

10 $data = json decode($json, TRUE);

11 $data [’labels’] = array(

12 0 => "Identificaç~ao do Emigrante",

13 1 => "Nome do Emigrante",

14 2 => "Data de Nascimento",

15 3 => "M~ae",

16 4 => "Pai",

17 5 => "Freguesia",

18 6 => "Concelho",

19 7 => "Distrito",

20 8 => "Nome do Cônjuge",

21);

22 $data [’collapsed’] = "expanded";

23 $tpl = new SMTemplate();

24 $tpl->render(’exhibition1’, $data);

The generated code (“exhibition1.php”) file performs six tasks:

1. receives as input:

150Case Study 1 – Emigration Documents belonging to Fafe’s Archive

(a) “queryAll1.rq” file as the SPARQL query;

(b) “queryAll1.json” file to save the query’s result;

(c) “mef.obda” file as the OBDA mapping collection;

(d) OntoME IRI (“http://semanticweb.org/rgm/2018/OntoME/ ”);

(e) the program (“mappingOnto2Database.jar”) that in fact executes

the mappings and the “queryAll1.rq” file.

2. calls the shell exec() command with the received inputs;

3. gets the content of “queryAll1.json”, filled by the application “mappin-

gOnto2Database.jar”;

4. stores in $data the “queryAll1.json” decoded content;

5. stores the labels for the operator all() (Listing 12.9) and declares a flag

which defines the UI component behavior (expanded);

6. renders the exhibition room from the $data variable content. The last

two lines of Listing 12.25 mean that the variable $tpl (an instance of

the SMTemplate class) calls the method render (already defined in the

CaVa system), passing the array $data to render the Smarty template

exhibition1.tpl (see Listing 12.24). The placeholders of the exhibition1

template are filled with the $data array information, resulting in the

rendered exhibition1 (Figure 12.19) in Section 12.8. Every generated

exhibition room “.php” file, in CaVa, instantiates the SMTemplate class,

looking for rendering the template (“.tpl”) file associated.

As the generated code to create the exhibition room calls shell exec() every

time the page is requested, at the moment the performance criteria is not

taken into account, but in the future, it should be, because it can be a

problem, since it consumes time trying to get the result of a query, when

indeed the database was not changed. Maybe a kind of cache system shall

be used to overcome that flaw.

The following section presents the rendered views of the “Museu da Emi-

gração de Fafe” virtual Learning Space.

12.8 Rendering the final Emigration virtual LS with CaVarender 151

12.8 Rendering the final Emigration virtual

LS with CaVarender

As described in Chapter 11, the LS Scripts were generated by the CaVagen

set of processors. From these LS Scripts, CaVarender is the responsible for

recognizing and rendering them through a web browser. So, this section

displays screenshots that illustrate the outcome of rendering the generated

LS Scripts, comprising the virtual Learning Space entitled “Museu da Emi-

gração de Fafe”. The order of the images is presented in accordance with the

organization of Section 12.6, respecting the four main blocks of CaVaDSL.

The mainconfig element, rendered, is shown in Figure 12.15.

Figure 12.15: mainconfig element rendered (the initial LS page)

Figure 12.15 illustrates the page resulted from the specification of Listing 12.7

processed by the CaVa platform. It presents the introdutory text defined in

the about element and the images of the carousel with the second picture

(“Passaporte”) active.

The header of the virtual LS is described by themenu element of the CaVaDSL

specification. It is depicted in Figure 12.16, following the description of

152Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Listing 12.8.

Figure 12.16: menu element rendered

The header of the virtual LS is composed of the menu element describing

the brand (“Museu da Emigração de Fafe”), the background color (“crim-

son”), the foreground color (“white”), the behavior (“fixed”) and a menu

bar composed of two elements: one “Exibições” with five dropdown menus

(“Todas”, “Permanentes”, “Temporárias”, “Especiais”, and “Futuras”); and

one simple menu (“Sobre”).

The exhibitions list element, in the CaVa system, is divided by type, so in

this case study there is two ways to access it. The first one is through the

menu (Figure 12.16) in the option “Exibições”. The rendered list accessed

via the menu option is presented in Figure 12.17.

Figure 12.17: Exhibitions list accessed through the menu element

12.8 Rendering the final Emigration virtual LS with CaVarender 153

According to the specification of Listing 12.9, in Figure 12.17 it is possible

to see the attributes title, short description, icon (“file-o”), additional info,

and behavior (“expanded”).

The other way to access the list of exhibitions in CaVa can be seen in Figure

12.18, which presents all exhibitions in the initial page.

Figure 12.18: Exhibitions list accessed through the initial page

Based on the description of Listing 12.9, in Figure 12.18, the attributes title,

short description, and icon are shown. Through the button labeled “leia

mais” on the top right corner it is possible to access the list of exhibitions

(rendered as in Figure 12.17) of the respective kind (e.g., permanent, etc.).

To see the content of the exhibition room (query result), it is necessary to

access, through one of the two ways presented, the desired exhibition room.

Figure 12.19 presents the exhibition1.php rendered.

154Case Study 1 – Emigration Documents belonging to Fafe’s Archive

Figure 12.19: Exhibition1 content

The exhibition1.php file gives raise to an exhibition room that displays a

list of all the instances of emigrant found in the database, according to the

operator all() specified in Listing 12.9.

To finish the description of the entire virtual Learning Space created to dis-

play the emigration phenomena, the footer element described according to

the Listing 12.10 is shown in Figure 12.20.

Figure 12.20: footer element rendered

The footer contains images, date, developer name, alignment of the elements,

and style (“extended”), describing links for “social networks”, “partners”,

“addresses”, and “contacts” related to the virtual LS.

Thus, putting up the four blocks of CaVaDSL specification (mef.cava), de-

scribed in Section 12.6, together, the final Emigration virtual Learning Space

12.9 Summary 155

is finalized as presented in this section.

12.9 Summary

The main goal of this case study was to resort to the digital repository of

documents concerned with the emigration phenomena to show, step-by-step,

all the specifications written and all the processing performed to use CaVa

system to create the Emigration virtual Learning Space.

This chapter presented the application of the Emigration phenomena in the

CaVa framework, aiming at automatically generating the virtual LS.

In this case study, the development of a relational database (bdME) for the

domain in question was outlined. To populate the bdME repository, a web-

based application was developed as an ingestion function called SGPE.

To achieve the repository instances through the abstract concepts and a

controlled vocabulary, an ontology was designed (OntoME), which describes

the instances of bdME in an abstract way, and a mapping developed between

the bdME repository and the OntoME ontology, allowing the Curator to

query the relational database via the ontology vocabulary.

The specification of the Emigration virtual LS was presented. The archivist

of the Fafe’s Archive, Mónica Guimarães, specified the LS according to her

needs in CaVaDSL and the LS generation process guided by CaVagen was

detailed. As a result, the final virtual Learning Space was conceived. This

case study showed some screenshots of the generated web-based LS.

So, to conclude, this case study was applied in the CaVa architecture and

the objective of automatically generating a virtual LS based on a formal

description using CaVaDSL and an ontology was successfully achieved.

However, the development of this project is much more than a mere academic

exercise to be used as a proof of concept. Analyzing this archive collection,

and extracting data to populate a database goes beyond this. Several oppor-

tunities were created, like:

156Case Study 1 – Emigration Documents belonging to Fafe’s Archive

• Potentiate the demand for cultural issues;

• Make available the documentary archive about the problematic of the

emigrations in Portugal and in the world;

• Research, in collaboration with scientific and academic institutions, to

share the knowledge about the problematic of the emigrations;

• Promote seminars, conferences, debates and other activities related to

the phenomena associated with population movements;

• Promote the research about the emigrants in the host territories and

in their return to Portugal, treating questions about architecture, in-

dustry, commerce, philanthropy, journalism and arts, among others.

In the context of this work, following the route of the emigrants is important,

because this allows the recognition of the cultural trades, the di�culties in the

adaptation, the prejudices that they su↵ered, among other relevant subjects.

To sum it up, the study of the emigrants potentiated by the information

system reported is essential to understand the development of the destination

areas as well as the influences that the emigration causes in the society in

the return of the emigrant to his country.

As future work, this project can be extended to bring together the infor-

mation not only about the passport application form, but other sources like

biographies, letters, ships’ routes, etc. Thus, the final virtual Emigration

Museum can be enriched with more knowledge about the emigration phe-

nomena.

In order to fortify the use of relational databases as the sources for the CaVa

system, Chapter 13 presents another case study, showing all the process from

the sources until reaching the final virtual LS about the prosopographical

repository of the Fasti Ecclesiae Portugaliae project.

Chapter 13

Case Study 2 – The

prosopographical repository of

the Fasti Ecclesiae Portugaliae

project (Clero Catedralicio)

To illustrate the use of the CaVa system applied to di↵erent scenarios in order

to demonstrate its adaptability, the case study about the Fasti Ecclesiae

Portugaliae project is discussed in this chapter. A relational database will

be used again to store the digital project repository; so a mapping will be

specified between it and an ontology, which describes the database instances.

This chapter presents only particular aspects of this case study, because it is

very similar to the case study outlined in Chapter 12.

The Fasti Ecclesiae Portugaliae project had as objective the design of a re-

lational database for the study of the Portuguese Cathedral Clergy in the

middle age. The main idea behind this project was to make the assets avail-

able to the scientific community [Jorge et al., 2004].

The date of the documents included in the database (bdFasti) is between

1071, year of restoration of the first Portuguese diocese (Braga) after the

157

158
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

Muslim occupation, and 1325, the end of the reign of D. Dinis. The project

holds more than 7000 documents of nine dioceses (Braga, Porto, Coimbra,

Lamego, Guarda, Viseu, Lisboa, Évora e Silves) [Jorge et al., 2004].

The study about the clergy is based on the analysis of bishops (or archbishops

in the case of Braga), as well as dignities, canons, and constitutional portions

of the cathedrals, excluding the remaining auxiliary clergy, such as chaplains,

vicars and clergymen, among others [Jorge et al., 2004].

The case study here reported is based on the publication entitled “Automatic

Generation of Virtual Learning Spaces Driven by CaVaDSL: An Experience

Report” [Martini and Henriques, 2017a]. Next, the structure of the database

is presented, showing examples of the data.

13.1 bdFasti, the Fasti Ecclesiae Portugaliae

Project Database

This section presents the bdFasti schema and examples of the data contained

in the database. Figure D.1 displays the physical model of bdFasti.

This database contains 17 tables. The main tables are “clerocatedralicio”

(CodClerigo PK) and “documentos” (CotaDocumento PK), which are related

by the “clerodocumentos” association table.

To exemplify the data included in the bdFasti database, Table 13.1 shows the

table “clerocatedralicio” and Table 13.2 presents the table “documentos”.

Table 13.1: “clerocatedralicio” table

clerocatedralicio

CodClerigo historiador NomeProprio Patronimico

1 justiniana Martinus Iohannis
2 justiniana Joham Siluestre
...

1220 andre Gundisalbus
...

3989 mariofarel Franciscus Simeonis
3990 mariofarel Petros Martini

13.2 OntoFasti, an ontology for the Fasti Ecclesiae Portugaliae
Project 159

Table 13.2: “documentos” table

documentos

CD

1
Arquivo DataCron Dioceses TipoDoc Sumario

1 ADB2 1318-Março-18 Braga
Carta de
Compra

Carta de
compra da Quinta ...

2 ADB 1318-Março-23 Braga
Carta de
Doação

Doação do herdamento
de Subcunha ...

...

6543 TT3 1248/05/21 Coimbra
O bispo eleito D. Egas,

o cabido da Sé ...

Notice that just a subset of all the fields and data rows are shown, not

comprising all the columns and rows of the presented tables.

These two tables will be used to illustrate the mapping phase between bdFasti

and OntoFasti in Section 13.3.

13.2 OntoFasti, an ontology for the Fasti Ec-

clesiae Portugaliae Project

OntoFasti is an ontology designed for the prosopographical repository of

the Fasti Ecclesiae Portugaliae project domain. The ontology (Figure 13.1)

contains:

• concepts like: “Archive”, “Belongings”, “Clergy”, “Date”, “Document”,

“Person”, and “Place” (“Diocese” as a subclass of “Place”);

• relations4 like: “belongs to”, “contains”, “has current location”, “has

relative/has as dependent/historian”, “is cited in”, and “takes place

at”;

1 CotaDocumento
2 Arquivo Distrital de Braga
3 Instituto dos Arquivos Nacionais/Torre do Tombo
4 The inverse relations were not taken into account for this section to keep the schema

simple

160
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

• properties like:

– “is identified by”, “has name”, and “has patronymic”, describing

the attributes in the small circles (cc), (n), and (p), respectively

for the concept “Clergy”;

– “has name” (n) for the entity “Person”;

– “has description” (d) for “Archive”;

– “is located in” (p) for “Place” and as inheritance, for “Diocese”;

– “has date” (d) for the “Date” entity;

– “is identified by”, “has summary”, and “has type”, for the at-

tributes (cd), (s), and (t), respectively for the “Document” con-

cept.

Diocese

Document

Archive

Place

Date

Person

Clergy Belongings

s

contains

is cited in

has relative /
has as dependent /

historian

belongs to

has type

contains

has current location

takes place at

d

has description

t

has summary

cd

is identified by

n

has patronymic

p

has name
cc

is identified by

n

has name

d

has date

p

is located in

Figure 13.1: OntoFasti, an ontology for the Fasti Ecclesiae Portugaliae do-
main

13.3 Mapping between OntoFasti and bdFasti 161

So in order to create a pavement between bdFasti and OntoFasti for retrieving

the database instances to put together in the final virtual LS about the Fasti

Ecclesiae Portugaliae domain, Section 13.3 describes the mapping for this

specific task.

13.3 Mapping between OntoFasti and bdFasti

To create the mapping axioms for this case study, the Ontop framework was

used. So, based on the OntoFasti schema of Figure 13.1 and the bdFasti

database (Figure D.1), Listing 13.1 presents the mapping rules for this case

study.

Listing 13.1: Mapping of bdFasti “clerocatedralicio”, and “documentos” ta-

bles – “clero.obda”
1 [PrefixDeclaration]

2 ...

3 [SourceDeclaration]

4 ...

5 [MappingDeclaration] @Collection [[

6

7 mappingId Document

8 target :URI/Document#{CotaDocumento} a :Document ;

9 :is identified by {CotaDocumento} ;

10 :has type {TipoDoc} ;

11 :has summary {Sumario} ;

12 :contains :URI/Date#{DataCron} ;

13 :has current location :URI/Diocese#{Dioceses} ;

14 :belongs to :URI/Archive#{Arquivo} .

15 source SELECT CotaDocumento, TipoDoc, Sumario, DataCron, Dioceses, Arquivo FROM documentos

16

17 mappingId Clergy

18 target :URI/Clergy#{CodClerigo} a :Clergy ;

19 :is identified by {CodClerigo} ;

20 :has name {NomeProprio} ;

21 :has patronymic {Patronimico} ;

22 :historian :URI/Person#{historiador} ;

23 :is cited in :URI/Document#{CotaDocumento} .

24 source SELECT cc.CodClerigo, cc.NomeProprio, cc.Patronimico, cc.historiador, d.CotaDocumento

25 FROM clerocatedralicio as cc, documentos as d, clerodocumentos as cd

26 WHERE d.CotaDocumento = cd.CotaDocumento

27 AND cc.CodClerigo = cd.CodClerigo

28

29 //other mapping rules ...

30]]

The mapping axioms of Listing 13.1 describe two ontological concepts of

OntoFasti. The “Document” concept, which according to the target decla-

ration, has three relations (namely “has current location”, “contains”, and

162
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

“belongs to”) and three properties (namely “is identified by”, “has type”,

and “has summary”). In source, it is specified the SQL instruction for fetch-

ing the instances of “CotaDocumento”, “TipoDoc”, “Sumario”, “DataCron”,

“Dioceses” and “Arquivo” fields from “documentos” table.

The second concept is the “Clergy”, which consists of two object properties

(namely “historian”, which refers to a “Person”, and “is cited in”, that refers

to the “Document” entity) and three attributes (“CodClerigo” correspond-

ing to the property “is identified by”, “NomeProprio” related to the datatype

property “has name”, and “Patronimico” associated to “has patronymic”).

The declaration in source is related to the SQL query to get the instances for

the “CodClerigo”, “NomeProprio”, “Patronimico”, “historiador”, and “Co-

taDocumento” fields from three database tables (“clerocatedralicio”, “docu-

mentos”, and the association table “clerodocumentos”).

As explained in Chapter 12, the main objective is to relate a database and an

ontology, in order to query the sources via an abstract layer, putting together

the database instances in the virtual LS.

So, having all the prerequisites for the specification of the described virtual

LS, Section 13.4 outlines a CaVaDSL description for the Fasti Ecclesiae Por-

tugaliae virtual Learning Space based on the OntoFasti vocabulary.

13.4 A CaVaDSL specification for the Fasti Ec-

clesiae Portugaliae virtual LS

Based on CaVagrammar presented in Appendix A.1 and the explanations in

the previous chapters, Listing 13.2 presents a CaVaDSL specification based on

the prosopographical repository of the Fasti Ecclesiae Portugaliae project,

to illustrate how to define a virtual Learning Space with the same title of the

project – “Fasti Ecclesiae Portugaliae”.

Listing 13.2: A CaVaDSL specification for the Fasti Ecclesiae Portugaliae

virtual LS – “fep.cava”

13.4 A CaVaDSL specification for the Fasti Ecclesiae Portugaliae
virtual LS 163

1 mainconfig [

2 LS title: “Fasti Ecclesiae Portugaliae”,

3 about [

4 p: “O projeto Fasti Ecclesiae Portugaliae compreende o estudo da

5 Prosopografia do Clero Português.”,

6 p: “O universo social em análise inclui bispos ou arcebispos, no caso de Braga,

7 bem como dignidades, cónegos e porcionários constituitivos dos cabidos das catedrais.”,

8]

9]

10

11 menu [

12 brand: “FEP”,

13 background color: crimson,

14 foreground color: white,

15 behavior: fixed,

16 options [

17 label: “Exibiç~oes”, dropdown [

18 dropdown label: “Permanentes”, url: “permanentes”,

19 dropdown label: “Temporárias”, url: “temporarias”,

20]

21 label: “Sobre”, url: “sobre fep”,

22]

23]

24

25 exhibitions [

26 exhibition [

27 title: “Documentos FEP: 1071-1325”,

28 short description: “Conjunto de 7792 documentos

29 da clerezia das catedrais portuguesas, desde a

30 restauraç~ao da primeira diocese do futuro reino,

31 Braga, em 1071 ...”,

32 icon: “icon-archive”,

33 additional info [

34 title: “7792”,

35 description: “Documentos”,

36]

37 behavior: expanded,

38 type: permanent,

39 Document->all(“Documentos FEP”, “clero.obda”,

40 “http://semanticweb.org/rgm/2018/OntoFasti/”)

41]

42 # other exhibitions . . .

43]

44

45 footer [

46 images [

47 image: “cava logo.png”,

48 alignment: right,

49]

50 format date: “Y”,

51 developer [

52 name: “CaVa R�”,

53 alignment: left,

54]

55 behavior: fixed,

56 style: condensed,

57]

Listing 13.2 specifies a virtual Learning Space with a menu containing back-

ground color (“crimson”), foreground color (“white”), behavior (“fixed” –

which means the menu stays on top of the screen and two sub-menus (one of

type dropdown with two choices (1) Permanentes – that lists all permanent

164
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

exhibitions; and (2) Temporárias – that lists all temporary exhibitions; and

another, a simple menu with label “Sobre” (About))).

This specification exposes only one exhibition entitled “Documentos FEP:

1071-1325”, but on the “exhibitions” component, the curator can add as

many exhibitions as he wants (note the “# other exhibitions . . .” com-

ment). The exhibition specified contains a short description that tells what

the exhibition is about, an icon (just for presentation) and an additional info

(title “7792” and description “Documentos”).

Moreover, it is characterized with an “expanded” behavior – which means

the exhibition component on the web page will appear opened –, a type

(“permanent” exhibition), and the query operator:

concept->all(“params”)[“list of attributes”]

The query operator in the example is defining a query on the concept “Docu-

ment”. This concept must be described on OntoFasti ontology (the third pa-

rameter of operator all — http://semanticweb.org/rgm/2018/OntoFasti/).

The first parameter corresponds to the list name that is presented in the

exhibition room (just for presentation). The second parameter is related to

the OBDA mapping file (“clero.obda”). The list of attributes, in this case,

was not defined, so the CaVa system will get the annotation properties as the

labels for rendering the final exhibition room content.

To conclude the description of the virtual Learning Space for the Fasti Ec-

clesiae Portugaliae domain, the footer component is specified with some at-

tributes like images, format date, developer name, behavior (“fixed” – similar

to the menu’s behavior) and style (“condensed” – simple footer, the oppo-

site of “extended”). The curator can also choose the alignment (images and

developer’s information).

Next, in Section 13.5, the machinery for the generation of the virtual LS for

this particular case study is explained.

13.5 CaVagen applied to the automatic generation of the Fasti
Ecclesiae Portugaliae virtual LS 165

13.5 CaVagen applied to the automatic gener-

ation of the Fasti Ecclesiae Portugaliae

virtual LS

Based on Chapter 10, this section deals with the processing of the CaVaDSL

specification (Listing 13.2) to generate the virtual Fasti Ecclesiae Portugaliae

Learning Space. As it is analogous to case study 1 (Chapter 12), only the

specific characteristics of CaVagen will be presented in detail.

To recognize the fep.cava specification file, the CaVastructure schema (Figure

10.3) is used with the subsequent implementation:

• CaVaDSL Specification 7! fep.cava file;

• CaVagrammar Processor 7! ANTLR;

• CaVa State file 7! plain text (.txt);

Notice again that CaVagrammar (Appendix A.1) is not instantiated, because

it is always the same for this project.

To deal with the fep.cava input file, ANTLR processes CaVagrammar and gen-

erates the CaVastructure application skeleton. The generated skeleton is the

same of that explained in Section 12.7. So, all the listeners implementation

based on the skeleton is the same. The only di↵erence is in the code pro-

duced, which depends on the context (ctx) caught by the listeners. So, for

instance, the code of Listing 12.11 (lines 6 to 9) defines the statement to

generate the “LS title” in PHP code. For case study 1, the title caught by

the listener context was “Museu da Emigração de Fafe”. For this case study,

the context gets a di↵erent value, which is “Fasti Ecclesiae Portugaliae”, as

specified in Listing 13.2. For the rest of the generation process, the same

occurs.

166
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

To exemplify the generated code for this case study, Listing 13.3 lays out

the result of the SPARQL query assembly by CaVaqueries for the CaVaDSL

specification of Listing 13.2.

Listing 13.3: Generated SPARQL query file excerpt – “queryAll1.rq”
1 PREFIX : <http://semanticweb.org/rgm/2018/OntoFasti/>

2 PREFIX owl: <http://www.w3.org/2002/07/owl#>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?p 0,?p 1,?p 2,?p 3,?p 4,?p 5,?p 6

7 WHERE {

8 ?Document a :Document ;

9 :is identified by ?p___0 ;

10 :has type ?p___1 ;

11 :has summary ?p___2 ;

12 :contains ?Date ;

13 :has current location ?Diocese ;

14 :belongs to ?Archive .

15

16 ?Date a :Date ;

17 :has date ?p___3 .

18

19 ?Diocese a :Diocese ;

20 :is located in ?p___4 .

21

22 ?Archive a :Archive ;

23 :has description ?p___5 ;

24 :takes place at ?Place .

25

26 ?Place a :Place ;

27 :is located in ?p___6 .

28 }

The biggest di↵erence between case study 1 and this one is that in the execu-

tion of the generated SPARQL query, as the “list of attributes” is unknown,

the CaVastructure processor gets back the execution flow and calls an extra pro-

cessor that uses the ontology property names (rdfs:label) as the labels for

the final exhibition room rendering. So, at this point, this processor searches

for the property name, achieved from the mapping file “clero.obda” (Listing

13.1), in the ontology file description and returns the annotation text.

To reach the annotation property text from the ontology file, through the

mapping rules, two actions need to be performed based on the initial rule to

be derived in the assembly of the SPARQL query (like in Table 12.2):

1. when the placeholder is related to a literal (the one that make up the

SPARQL variable “?p X”), the property prior to it is picked up;

13.5 CaVagen applied to the automatic generation of the Fasti
Ecclesiae Portugaliae virtual LS 167

2. when the placeholder is associated to a new mapping rule, the object

property and all the relations until reaching the literal placeholder (as

described in step 1) are taken.

Listing 13.4 presents a small part of the ontology file, exemplifying the ex-

cerpt from where the rdfs:label is extracted.

Listing 13.4: Excerpt showing the rdfs:label tag of is located in datatype

property
1 <owl:DatatypeProperty rdf:about="http://www.semanticweb.org/rgm/2018/ontoFasti#is located in">

2 <rdfs:domain rdf:resource="http://www.semanticweb.org/rgm/2018/ontoFasti#Place"/>

3 <rdfs:label xml:lang="en">is located in</rdfs:label>

4 </owl:DatatypeProperty>

So, after the execution of the generated query (the code of Listing 13.3), the

labels (taken from the OntoFasti file, like in Listing 13.4) to be shown in the

exhibition room entitled “Documentos FEP: 1071-1325” can be seen in Figure

13.2. Notice that without the “list of attributes”, the headerOfEachElement

becomes the name of the concept called in the query operator of the CaVaDSL

specification plus the first fetched value for each subject (in this case “Doc-

ument” plus the value of “CotaDocumento”).

168
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

Figure 13.2: Exhibition Room rendered with labels from rdfs:label

Thus, getting all the objects of the JSON file generated by the execution

of the SPARQL query of Listing 13.3, the exhibition room is rendered, as

shown in Figure 13.2.

To illustrate the generated static content, Figures 13.3 and 13.4 display the

initial page of the virtual LS and the list of all permanent exhibitions, re-

spectively.

13.5 CaVagen applied to the automatic generation of the Fasti
Ecclesiae Portugaliae virtual LS 169

Figure 13.3: Initial web page of FEP virtual LS

Figure 13.3 depicts the initial web page of the FEP LS, showing the menu

with the “Exibições” and “Sobre” labels, the “about” text and the four

types of exhibitions, listing one entitled “Documentos FEP: 1071-1325” in

the permanent exhibition room section.

Figure 13.4: Permanent Exhibition Room list of FEP virtual LS

170
Case Study 2 – The prosopographical repository of the Fasti Ecclesiae

Portugaliae project (Clero Catedralicio)

Figure 13.4 illustrates the list of the permanent exhibition rooms. As in

this case only one exhibition was specified, just one element appears in the

rendered list. This element contains a title “Documentos FEP: 1071-1325”,

additional info with title “7792” and description “Documentos”. The short

description of the exhibition room is also shown, as the behavior “expanded”,

which displays the UI component opened.

13.6 Summary

This case study was developed to reinforce the approach used in case study

1, demonstrating that CaVa architecture fits adequately to di↵erent domains.

The relational database of the Fasti Ecclesiae Portugaliae project was used

as the source for this work.

An ontology (OntoFasti) was developed, which serves to describe the bdFasti

instances through abstract concepts.

The use of the mapping between the ontology and the relational database

was the focus of this study, because it evidences that the CaVa system fulfills

its goals based on the tested approach.

So, to automatically generate the virtual LS of the Fasti project, a specifi-

cation written in CaVaDSL was presented and used by CaVagen to create the

LS scripts that together formed the final LS. As a result, some screenshots

of the generated web-based LS were depicted.

Notice that this case study is smaller than the first one (Chapter 12), but

it performed the same steps and achieved the desired output, i.e., the final

virtual Fasti Ecclesiae Portugaliae Learning Space.

Finally, as it happened with case study 1, because it deals with interesting

matters in the cultural and social domain, social studies similar to the ones

listed in Section 12.9 can also be elaborated.

As future work, other sources, as well as other epochs related to the cathedral

13.6 Summary 171

clergy can be studied, thus creating new exhibition rooms for the generated

virtual learning environment.

In order to demonstrate the application of the CaVa architecture using an

RDF database (triple store), Chapter 14 presents a virtual Learning Space

for the Museum of the Person.

Chapter 14

Case Study 3 – Collection of

life stories of the Museum of

the Person

In order to build an international network of life stories, the Museum of

the Person (MP) was founded in 1991 in São Paulo, Brazil1. The main

purpose of MP is to record, preserve and disseminate the life stories of anyone,

be it famous or anonymous. Thus, from storing stories, it is possible to

study and contribute to di↵erent aspects of society [Almeida et al., 2001],

[Simões and Almeida, 2003], [Araújo, 2016].

The original Museum of the Person is still an active and accessible project.

The Brazilian version of MP can be accessed at: http://www.museudapessoa.

net. From the original MP, the Portuguese version was conceived, focusing

on knowing and reproducing life stories of Portuguese citizens. MP is located

in Brazil, Portugal, USA, and Canada.

This case study is concerned with the creation of a virtual LS that exhibits

life stories of common citizens. So, it is a reconstruction of the Portuguese

version of the global Museum of the Person that connects individuals and

1 Accessible at: http://www.museudapessoa.net

173

http://www.museudapessoa.net
http://www.museudapessoa.net
http://www.museudapessoa.net

174 Case Study 3 – Collection of life stories of MP

groups through sharing their life stories.

Regarding the duties of Module A – CaVasettler (Sections 14.1 to 14.3), this

case study was done in collaboration with Cristiana Araujo in her master

thesis and some publications in this area. So, those sections will present

the first part of CaVa, aiming at populating the Database Repository (triple

store) and describing the OntoMP ontology.

Section 14.1 presents the collection of the Museum of the Person, as well as

the way it was stored in its initial format.

14.1 The Museum of the Person Assets

This section presents the assets of the Museum of the Person in this case

study and it is based on the publication [Martini et al., 2016a] and the master

thesis [Araújo, 2016].

This museum deals with common people, human beings, not with physical

objects usually composing the traditional museum assets. Its “art collection”

is made up of intangible or immaterial things.

According to [Almeida et al., 2001], life stories are evidences in support of

facts or statements attested by common people carrying a social and histor-

ical character, which must be preserved and processed to become an immea-

surable human heritage.

The alive objects are used as informers, reporting the events and emotions

they experienced [Almeida et al., 2001]. Actually, the narrators, to report

their life stories during a predefined structured interview, remember events

and particular situations they have participated in. These memories will act

as a basic element for social research, because the set of life stories allows to

reconstruct a social universe [Almeida et al., 2001].

So, aiming at getting and processing the life story of each participant, the

following approach is used by the Museum of the Person technicians:

14.1 The Museum of the Person Assets 175

• The report of a participant is recorded (audio or video) by an inter-

viewer. Although every interview is a unique thing, interviewers guide

to some predefined topics in order to cover the entire life story;

• Interviews are transcribed;

• Transcriptions are annotated in XML, marking events, self contained

stories, etc;

The MP’s collection is built up from interviews and it consists of XML doc-

uments related to each participant separated by projects (e.g., “Projecto da

Afurada”, “Memórias do Trabalho - testemunhos do Porto laboral no séc.

XX”, etc.). These XML interviews can be used to produce several outputs

(e.g., the final virtual Museum of the Person Learning Space, etc.). An in-

terview is divided into three parts [Simões and Almeida, 2003]:

• mini-biography and personal data: such as name, birthdate, place

of birth, and job. A separated file (named BI) contains such informa-

tion;

• two versions of the interview: the interview original text, and the

edited document.

– The interview file refers to the raw interview; it contains all the

questions asked and the narrator’s answers;

– The edited file is a plain text, structured by themes that define

small portions of a person’s life story. In this format, a life history

may give rise to thematic stories (e.g., dating, childhood, craft,

among others).

Both interview and edited files contain metadata, tagging to define

important testimony zones. Examples of these marks are given, like

institution names, jobs, places, etc;

176 Case Study 3 – Collection of life stories of MP

• photographs and their subtitles: the subtitle document contains

a section for each photo or scanned document as a file name and a

caption. This caption includes a description of the image and the date,

and when possible, the name of the stakeholder.

In addition to the interviews, there is a thesaurus, which includes key con-

cepts mentioned in the stories.

The edited interview is in XML format, according to a Document Type

Definition (DTD) defined specially for this purpose. This DTD consists of:

identification of the deponent, episode, ancestry, descent, childhood, house,

education, tradition, religion, quotidian, migration, place, dating, marriage,

o�ce, life’s philosophy, event and photograph, among others. To exemplify,

the event (evento) element is shown in Listing 14.1.

Listing 14.1: DTD schema to describe an Event (Evento)
1 <!ELEMENT evento (%texto ;)>

2 <!ATTLIST evento

3 ano CDATA #REQUIRED

4 mes CDATA #IMPLIED

5 dia CDATA #IMPLIED

6 local CDATA #IMPLIED

7 eixo CDATA #IMPLIED

8 titulo CDATA #IMPLIED

9 descricao CDATA #IMPLIED

10 relevancia (Alta | Media | Baixa) ‘‘Media’’

11 >

The element evento is defined as %texto, an XML Entity. The attributes

of the evento element are: year (ano), month (mes), day (dia), place

(local), type (eixo), title (titulo), description (descricao), and rele-

vance (relevancia).

To clarify how the assets of the Museum of the Person are stored, an example

based on the master thesis [Araújo, 2016] is given. The example presented

in Listing 14.2 is the BI.xml file about the Maria Cacheira’s life story, which

contains her mini-biography (personal data, birthplace, birthdate, job, etc).

14.2 OntoMP, an ontology for the Museum of the Person 177

Listing 14.2: Maria Cacheira’s BI
1 <?xml version="1.0" encoding="ISO-8859-1"?>

2 <bi>

3 <projecto>Projecto da Afurada</projecto>

4 <depoente>Maria Alice Rodrigues Cacheira</depoente>

5 <entrevistador>Ana Pereira; Guilherme Soares e Maria Jose da Cunha</entrevistador>

6 <biografia>Maria Alice Rodrigues Cacheira nasceu na Afurada, a 8 de Outubro de 1946. Andou na escola ate a

7 <habilitacoes quem="Maria Cacheira" nivel="EB">

8 <escolaridade>quarta classe</escolaridade>

9 </habilitacoes>.

10 Perdeu a mae aos 11 anos e abandonou os estudos. Como era a filha mais velha, passou a infancia a cuidar

11 dos tres irmaos e a ajudar o pai, que era pescador, a vender o peixe. Passados 18 meses o pai casou com

12 uma tia e dessa relacao nasceram sete filhos. Casou aos 21 anos com um ajudante de motorista de barco.

13 Apos seis anos de casamento o marido morreu com leucemia deixando tres filhas ainda pequenas. Comecou

14 a trabalhar num matadouro e, posteriormente, a vender peixe. Tem seis netos e trabalha na

15 <local de="Local de trabalho" quem="Maria Cacheira">junta de freguesia de Sao Pedro da Afurada.</local>

16 <local de="Local de trabalho" quem="Maria Cacheira">Ao sabado ainda vende peixe no Arrabida.</local>

17 </biografia>

18 <data ano="2000" mes="12" dia="12"/>

19 <profissao>peixeira; empregada de limpeza</profissao>

20 <nascimento onde="Afurada" ano="1946" mes="10" dia="08"/>

21 </bi>

The BI element can be composed of: the project and the deponent names,

the interviewer(s), photo, date, job, address, biography and birth, among

others.

Thus, supported by the thesaurus and some extra concepts, the OntoMP

ontology was designed based on three well-defined ontologies (CIDOC-CRM,

FOAF, and DBpedia), aiming at describing the MP assets. Section 14.2

presents the final ontology for this case study domain.

14.2 OntoMP, an ontology for the Museum

of the Person

This section presents the final OntoMP ontology designed with the purpose

of describing the MP assets, as already outlined in Section 14.1. This work

is based on [Martini et al., 2016a] and the master thesis [Araújo, 2016].

The OntoMP ontology for the Museum of the Person was built following the

steps below:

• The first step was an exhaustive extraction of the concepts present in

the life stories. After a long analysis phase the following list came up:

178 Case Study 3 – Collection of life stories of MP

people (pessoa), ancestry (ascendência), o↵spring(descendência), house

(casa), job (profissão), education (educação), episode (episódio), dat-

ing (namoro), accident (acidente), migration (migração), festivity (fes-

tividade), political event (evento poĺıtico), catastrophic event (evento

catastrófico), marriage (casamento), birth (nascimento), dream (sonho),

childhood (infância), uses (costumes), quotidian (quotidiano), leisure

(lazer), religion (religião), life’s philosophy (filosofia de vida).

• In this phase relations were also identified:

performs (exerce), depicted (éRetratada), visits (visita), lives (vive),

receives (recebe), tells (narra), has (tem), enrolls (participa), has-type

(tipo), occurs (ocorre), refers to (dizRespeito).

• After the extraction phase it was built an ontology for the MP using

the concepts and relations above. Then it was realized that some more

concepts could still be added to make a more complete ontology. The

newly added concepts were:

marital status (estadoĆıvil), sex (sexo), literacy (habilitações literárias),

political party (partido poĺıtico), first communion (primeira comunhão),

death (morte), baptism (batismo), and photos (fotos).

The first sketch of the OntoMP ontology is shown in Figure 14.1, presenting

an instance of OntoMP for Maria Cacheira life story.

14.2 OntoMP, an ontology for the Museum of the Person 179

Figure 14.1: An instance of OntoMP for Maria Cacheira life story (excerpt)
[Martini et al., 2016a] [Araújo, 2016]

As depicted in Figure 14.1, OntoMP has the ability to break down the raw

story into logically related elements. In this way, the LS visitor can concep-

tually navigate over the collection [Martini et al., 2016a] [Araújo, 2016].

After the OntoMP first sketch, a new version based on the CIDOC-CRM

ontology came out, but this version had some lacks in the personal relation-

ships. Then in [Araújo, 2016], OntoMP was improved, handling with the

properties relating people in a more natural form than using only CIDOC-

CRM, which is not appropriated to deal with this kind of situation. So,

since FOAF and DBpedia contain a vocabulary specific to describe personal

relations and personal activities, they were used to extend the CIDOC-CRM

version of OntoMP [Allemang and Hendler, 2011].

Concerning DBpedia, the properties religion, education, profession, spouse,

and party were used. The applied properties related to FOAF were gender,

name, givenName, familyName, nick, depicts, and depiction [Araújo, 2016].

The final version of OntoMP with CIDOC-CRM, FOAF, and DBpedia was

180 Case Study 3 – Collection of life stories of MP

instantiated with real data obtained from the document life stories. Once

again, the example for the Maria Cacheira’s interview is shown. Figure 14.2

presents the same instantiation excerpt of Figure 14.1, but now with the final

version of OntoMP. For the sake of simplicity, notice that the examples were

extracted from [Araújo, 2016].

Figure 14.2: An instance of OntoMP for Maria Cacheira life story (excerpt)
based on CIDOC-CRM / FOAF / DBpedia [Araújo, 2016]

The fragment of Figure 14.2 describes a CIDOC-CRM E21 Person concept,

who has some FOAF datatype properties (dotted lines) like gender “Fem-

inino”, firstName “Maria Alice”, familyName “Rodrigues Cacheira”, and

name “Maria Alice Rodrigues Cacheira”. As object properties, this frag-

ment shows depicts, having as domain, the CIDOC-CRM E38 Image con-

cept and range, the CIDOC-CRM E21 Person (the inverse object property

is depiction).

In addition to the FOAF properties, the DBpedia datatype properties (dashed

lines) are education “Sabe ler e escrever (4a classe)”, profession “Peixeira e

Empregada de limpeza”, and religion “Católica”.

14.3 Data Extraction and Ontology Population (XML2RDF) 181

The enhancement of the OntoMP ontology with CIDOC-CRM, FOAF, and

DBpedia properties describe the MP knowledge repository in a proper way.

The full diagrams for OntoMP (abstract ontology and instances) and its

CIDOC-CRM version are available at www.di.uminho.pt/~gepl/OntoMP.

As result of the work of Cristiana Araújo in her master thesis, the virtual

Museum of the Person and the OntoMP full versions can be accessed at

http://npmp.epl.di.uminho.pt/.

After having the OntoMP schema defined, Section 14.3 lays out the XML2RDF

translator, in order to populate the OntoMP ontology with the Museum of

the Person assets.

14.3 Data Extraction and Ontology Popula-

tion (XML2RDF)

To deal with the population of the MP Database Repository, a translator

called XML2RDF was designed and implemented. This section will be de-

scribed based on the publication [Araújo et al., 2017].

The XML2RDF translator plays the role of a DIS in the CaVa system, with

the goal of populating the Database Repository, that in this case is Apache

Jena TDB2, a component of Jena for RDF storage and query via datasets.

To allow persistent storage and use of SPARQL protocols for querying and

updating the datasets, the Apache Jena Fuseki3 server was used, which is

tightly integrated with TDB.

So, the main objective of XML2RDF is to get the input, that is a structured

collection of XML documents (in the edited format) and generate an output,

that is a sequence of <subject, predicate and object> RDF triples to be

stored in a TDB dataset (named “MPD”, which stands for Museu da Pessoa

Dataset). The concepts are related to the data items that are the value

2 Accessible at: http://jena.apache.org/documentation/tdb/
3 Accessible at: http://jena.apache.org/documentation/fuseki2/

www.di.uminho.pt/~gepl/OntoMP
http://npmp.epl.di.uminho.pt/
http://jena.apache.org/documentation/tdb/
http://jena.apache.org/documentation/fuseki2/

182 Case Study 3 – Collection of life stories of MP

of the attributes of an XML tag or the tag content. The predicate that

links the concepts can be taken from the XML tags and their structure. So,

XML2RDF needs to identify those data items in the given input, to extract

their values and print them in the RDF output file. A similar task is needed

to extract and print out the relations [Araújo, 2016] [Araújo et al., 2017].

To keep this section simple, since this work was already published and can

be accessed in the publications referred above, an example of the input and

the generated output for a catastrophic event is shown in Listings 14.3 and

14.4, respectively.

Listing 14.3: An XML input document – Catastrophic Event
1 <?xml version="1.0" encoding="ISO-8859-1"?>

2 <eventoCatastrofico tipo="catastrofico" subtipo="cheias" dequem="Douro" data="1962-01-02" onde="Afurada">

3 <p><rel tipo="where">rio Douro</rel>O ponto mais alto atingido pela agua foi precisamente no dia

4 2 de Janeiro de 1962. Nos so começamos a trabalhar aqui no dia 22, mas a casa passou para nos

5 no dia 2. No dia do aniversario foi quando as cheias atingiram o ponto mais alto. Isto tambem

6 era antiquado, era um tasco antiquado...

7 </p>

8 </eventoCatastrofico>

Listing 14.4: An RDF output document (excerpt) – Catastrophic Event –

mp.rdf
1 <rdf:Description rdf:about="&ecrm;E9">

2 <rdf:type rdf:resource="&ecrm;E5_Event"/>

3 <P2 has type rdf:resource="&ecrm;Catastrophic"/>

4 <P4 has time-span rdf:resource="&ecrm;TS29"/>

5 <P7 took place at rdf:resource="&ecrm;PL4"/>

6 <P3 has note rdf:datatype="&xsd;string">O ponto mais alto atingido pela agua foi precisamente no dia

7 2 de Janeiro de 1962. Nos so começamos a trabalhar aqui no dia 22, mas a casa passou para nos

8 no dia 2. No dia do aniversario foi quando as cheias atingiram o ponto mais alto. Isto tambem

9 era antiquado, era um tasco antiquado...

10 </P3 has note>

11 </rdf:Description>

12

13 <rdf:Description rdf:about="&ecrm;TS29">

14 <rdf:type rdf:resource="&ecrm;E52_Time-Span"/>

15 <P78 is identified by rdf:resource="&ecrm;1962-01-02"/>

16 </rdf:Description>

17

18 <rdf:Description rdf:about="&ecrm;PL4">

19 <rdf:type rdf:resource="&ecrm;E48_Place_Name"/>

20 <P3 has note rdf:datatype="&xsd;string">Afurada</P3 has note>

21 </rdf:Description>

So, getting the XML code of Listing 14.3 as input for the XML2RDF trans-

lator, the generated output (mp.rdf) is a set of RDF triples, like those shown

in Listing 14.4. Notice that for this example, only CIDOC-CRM (denoted

14.4 A CaVaDSL specification for the Museum of the Person 183

by the “&ecrm” prefix) properties were presented, but FOAF and DBpedia

properties are also generated and described in this document.

Translating all the Museum of the Person XML collection, the outcome will

be several RDF triples, configuring the complete Database Repository (triple

store). The populated triple store database is then accessed to extract the

information about the MP to be displayed in the final virtual Learning Space

generated by CaVagen. Section 14.4 presents a specification of a virtual Learn-

ing Space about the Museum of the Person in CaVaDSL.

14.4 A CaVaDSL specification for the Museum

of the Person

To specify a virtual Learning Space in CaVa, it is necessary to have all re-

quirements fulfilled. So, after defining Module A – CaVasettler (the triple store

database) and the OntoMP ontology, it is time to define the Museum of the

Person virtual LS according to CaVaDSL.

Thus, this section presents a CaVaDSL specification named mp.cava. Once

again, for reasons of organization and simplicity of the specification, it will

be presented divided into four blocks.

The main configuration (mainconfig element):

Listing 14.5: mainconfig element
1 mainconfig [

2 LS title: “Museu da Pessoa”,

3 about [

4 p: “O Museu da Pessoa nasceu em S~ao Paulo, Brasil, em 1991,

5 criado por um grupo de historiadores que decidiram construir a história

6 do paı́s usando depoimentos de pessoas comuns. Este ainda é um projeto

7 existente e acessı́vel em http://www.museudapessoa.net.

8 O Museu da Pessoa objetiva reunir os depoimentos de cada ser humano,

9 famoso ou anônimo, para perpetuar sua história. ”,

10 p: “A partir da história de vida dos indivı́duos, o objetivo

11 é escrever as histórias de famı́lia, comunidades ou até instituiç~oes. Este museu

12 lida com pessoas comuns, seres humanos, e n~ao com objetos fı́sicos, os quais

13 normalmente comp~oem os espólios de museus. A ‘‘coleç~ao de artes’’ é feita de

14 coisas imateriais ou intangı́veis. ”,

15 p: “Nesta vers~ao portuguesa do Museu da Pessoa,

184 Case Study 3 – Collection of life stories of MP

16 bem como nas outras vers~oes, os ‘‘objetos’’ da coleç~ao (pessoas) s~ao usadas

17 como informantes, reportando os eventos e emoç~oes que eles tiveram como experiência.

18 Atualmente, os narradores relatam suas histórias de vida durante uma

19 entrevista estruturada (gravada digitalmente). Nessa entrevista, os entrevistados

20 devem lembrar de eventos e outras situaç~oes particulares que participaram.

21 Essas memórias atuar~ao como um elemento básico para a pesquisa social,

22 pois o conjunto de histórias de vida permitem reconstruir um universo social. ”,

23]

24 carousel [

25 interval: 5,

26 images [

27 caption: “Museu da Pessoa”, src: “mp-capa.png”, active,

28 caption: “Projecto do Comércio Tradicional da Ribeira, Porto”, src: “001-F-06.jpg”,

29]

30]

31]

The specification of Listing 14.5 defines the title “Museu da Pessoa” and

three paragraphs about the Museum of the Person virtual LS, which will be

presented in the website homepage. Also, a carousel of images was specified

with a interval of 5 seconds for the transition between the images. The

“active” value determines the initial image when the page is loaded.

The next block of this specification is related to the header of the virtual LS

(the menu element).

The header (menu element):

Listing 14.6: menu element
1 menu [

2 brand: “Museu da Pessoa”,

3 background color: purple,

4 foreground color: white,

5 behavior: static,

6 options [

7 label: “Exibiç~oes”, dropdown [

8 dropdown label: “Todas”, url: “exhibitions”,

9 dropdown label: “Permanentes”, url: “permanent exhibitions”,

10 dropdown label: “Temporárias”, url: “temporary exhibitions”,

11 dropdown label: “Especiais”, url: “especial exhibitions”,

12 dropdown label: “Futuras”, url: “future exhibitions”,

13]

14 label: “Sobre”, url: “about”, extension: php,

15]

16]

The menu specification presented in Listing 14.6 defines the header of the

whole virtual LS. This element specifies the brand “Museu da Pessoa”, the

background color “purple” and the foreground color “white”, the behavior

14.4 A CaVaDSL specification for the Museum of the Person 185

“static”, which means that the menu will remain at the top of the screen and

not scrolling with it, and the menus (five dropdown and one simple labeled

“Sobre”).

Next, the content block is specified, showing the list of exhibitions containing

two exhibition rooms related to the Museum of the Person virtual LS.

The content (exhibitions element):

Listing 14.7: exhibitions element
1 exhibitions [

2 exhibition [

3 title: “Projectos e Histórias de Vida”,

4 short description: “Todas as pessoas entrevistadas e suas interessantes histórias de vida.”,

5 icon: “users”,

6 additional info [

7 title: “13”,

8 description: “Pessoas”,

9]

10 behavior: expanded,

11 type: permanent,

12 SPARQL [

13 PREFIX : <http://erlangen-crm.org/150929/>

14 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

15 PREFIX dbp: <http://dbpedia.org/ontology/>

16 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

17 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

18

19 SELECT DISTINCT ?name ?projecto ?gender ?job ?religion ?party ?education

20 ?resFREGUESIA ?resCONCELHO ?resDISTRITO ?birthFREGUESIA

21 ?birthCONCELHO ?birthDISTRITO ?birthTime ?nameConj

22 WHERE {

23 ?pessoa a :E21_Person;

24 :P129_is_subject_of ?doc .

25

26 ?doc :P2_has_type ?theme .

27

28 ?theme :P3_has_note ?projecto .

29

30 ?pessoa foaf:name ?name ;

31 foaf:gender ?gender ;

32 dbp:profession ?job ;

33 dbp:religion ?religion ;

34 dbp:party ?party ;

35 dbp:education ?education ;

36 :P74_has_current_or_former_residence ?res1 .

37

38 ?res1 :P87_is_identified_by ?residencia1 .

39 ?residencia1 :P3_has_note ?resFREGUESIA .

40 ?res1 :P89_falls_within ?res2 .

41 ?res2 :P87_is_identified_by ?residencia2 .

42 ?residencia2 :P3_has_note ?resCONCELHO .

43 ?res2 :P89_falls_within ?res3 .

44 ?res3 :P87_is_identified_by ?residencia3 .

45 ?residencia3 :P3_has_note ?resDISTRITO .

46

47 ?pessoa :P98i_was_born ?birth .

48 ?birth :P7_took_place_at ?place1 .

186 Case Study 3 – Collection of life stories of MP

49 ?place1 :P87_is_identified_by ?freguesia .

50 ?freguesia :P3_has_note ?birthFREGUESIA .

51 ?place1 :P89_falls_within ?place2 .

52 ?place2 :P87_is_identified_by ?concelho .

53 ?concelho :P3_has_note ?birthCONCELHO .

54 ?place2 :P89_falls_within ?place3 .

55 ?place3 :P87_is_identified_by ?distrito .

56 ?distrito :P3_has_note ?birthDISTRITO .

57 ?birth :P4_has_time-span ?ts .

58 ?ts :P78_is_identified_by ?birthTime .

59

60 ?pessoa dbp:spouse ?pess2 .

61 ?pess2 foaf:firstName ?nameConj .

62 }

63][headerOfEachElement: “Entrevistado”, “Projecto”, “Sexo”, “Trabalho”, “Religi~ao”,

64 “Partido Polı́tico”, “Educaç~ao”, “Residência - Freguesia”, “Residência - Concelho”,

65 “Residência - Distrito”, “Nascimento - Freguesia”, “Nascimento - Concelho”,

66 “Nascimento - Distrito”, “Data de Nascimento”, “Nome do Cônjuge”]

67]

68

69 exhibition [

70 title: “Pessoas e seus Eventos”,

71 short description: “Esta sala de exibiç~ao apresenta os entrevistados

72 e suas histórias relacionadas a eventos em que

73 participaram, como casamento, eventos catastróficos, etc.”,

74

75 icon: “calendar”,

76 additional info [

77 title: “5”,

78 description: “Tipos de Eventos”,

79]

80 behavior: expanded,

81 type: temporary,

82 available until: “2018-09-01”,

83 SPARQL [

84 PREFIX : <http://erlangen-crm.org/150929/>

85 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

86 PREFIX dbp: <http://dbpedia.org/ontology/>

87 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

88 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

89

90 SELECT DISTINCT ?name ?tipoEvent ?descricao

91 WHERE {

92 ?pessoa a :E21_Person;

93 :P129_is_subject_of ?doc;

94 foaf:name ?name;

95 :P11_participated_in ?ev .

96

97 ?ev :P2_has_type ?event ;

98 :P3_has_note ?descricao .

99

100 ?event :P3_has_note ?tipoEvent .

101 } ORDER BY ?name

102][headerOfEachElement: “Entrevistado”, “Tipo de Evento”, “Descriç~ao do Evento”]

103]

104 # other exhibitions . . .

105]

The exhibitions list specified in Listing 14.7 shows the definition of two ex-

hibition rooms. The first one is about the Projects and life stories of the

respondents. The exhibition “Projectos e Histórias de Vida” contains, be-

sides the title, a short description, an icon “users”, additional info composed

14.4 A CaVaDSL specification for the Museum of the Person 187

of a title “13” and description “Pessoas”. This first exhibition still encloses a

behavior “expanded” and a type “permanent”. In addition to these static in-

formation, the exhibition “Projectos e Histórias de Vida” includes a SPARQL

query, which is selecting the interviewed name, gender, job, religion, party,

education, residence, birthplace and birthdate, spouse name, and the project

in which he/she is allocated. A list of labels is also specified, as seen from

line 63 to 66.

The second specified exhibition room is entitled “Pessoas e seus Eventos”

(People and their events). This exhibition contains a short description, an

icon “calendar”, additional info consisting of a title “5” and a description

“Tipos de Eventos”. In addition to these attributes, a behavior “expanded”

and a type “temporary” were set. As the exhibition room has type “tem-

porary” defined, it is needed to set the date by which the exhibition will be

available, that in this case is “2018-09-01”. Aiming at reaching the instances

about the interviewed and their events, a SPARQL query was written. This

query selects the interviewed name and his/her events (type and description).

For presentation, a list of labels is also specified, as seen at line 102.

Notice that the prefixes for both SPARQL statements in the exhibition rooms

are about the CIDOC-CRM (erlangen4 implementation), FOAF, and DBpe-

dia ontologies, as well as RDF and XML Schema Definition (XSD).

The footer (footer element):

Listing 14.8: footer element
1 footer [

2 images [

3 image: “cava logo.png”,

4 alignment: right,

5]

6 format date: “Y”,

7 developer [

8 name: “Ricardo G. Martini”,

9 alignment: left,

10]

11 behavior: fixed,

12 style: extended [

13 title: “Redes Sociais”, subtitle: “visite também”[

4 Available at: http://erlangen-crm.org/

http://erlangen-crm.org/

188 Case Study 3 – Collection of life stories of MP

14 label: “facebook/museudapessoa”,

15 link: “https://www.facebook.com/museudapessoa/”,

16 icon: “facebook”, icon color: blue,

17]

18 title: “Parceiros”, subtitle: “visite”[

19 label: “Núcleo Português do Museu da Pessoa”,

20 link: “http://npmp.epl.di.uminho.pt/”,

21 icon: “institution”, icon color: purple,

22]

23 title: “Museu da Pessoa”,

24 subtitle: “vers~oes de outros paı́ses”[

25 label: “Museu da Pessoa (Brasil)”,

26 link: “http://www.museudapessoa.net”,

27 icon: “institution”, icon color: purple,

28]

29]

30]

The footer specification presented in Listing 14.8 specifies the footer of the

entire virtual LS. It contains images (as the CaVa logo), alignments for the

images and the developer attribute, a behavior “fixed” (which means the

footer will scroll with the screen), and the style as “extended”, meaning that

the footer can have some extra options consisting of title, subtitle, label, link,

icon, and icon color. This is useful to provide additional information about

partners, social networks, etc.

The processing of the mp.cava specification (all four blocks in the same .cava

file) is a duty of the CaVagen processor. So, Section 14.5 details the steps

from the recognition of mp.cava to the generation of the scripts that shall be

interpreted by the web browser in the CaVarender module.

14.5 CaVagen applied to the automatic gener-

ation of the Museum of the Person vir-

tual LS

Regarding the processing of themp.cava specification file to generate the final

virtual “Museu da Pessoa” Learning Space, CaVagen is applied, generating the

static and dynamic content.

The process of generating static content is a task of the CaVastructure processor

and it is very similar to the other two case studies (Chapters 12 and 13)

14.5 CaVagen applied to the automatic generation of the Museum of
the Person virtual LS 189

already presented. The only di↵erence is the context, i.e., the values to be

generated, but the structure is the same. Because of that, this case study

focuses on the processing and generation of the dynamic content, describing

the work done about the CaVarun processor, which deals with the SPARQL

queries written in Listing 14.7 to reach the right instances of the “MPD”

triple store dataset. Note that the CaVaqueriesTriple processor is not triggered

for the assembly of SPARQL queries, but it is called to verify if the query is

well formed according to the SPARQL grammar rules.

The CaVastructure blueprint of Figure 10.3 was realized in this case study by

the subsequent implementation:

• CaVaDSL Specification 7! mp.cava file;

• CaVagrammar Processor 7! ANTLR;

• CaVa State file 7! plain text (.txt);

Note that CaVagrammar, the CFG presented in Appendix A.1 is always the

same and is not instantiated in the project.

To exemplify the static content generation, based on the same listeners as

shown in Listing 12.11, the static LS script (.php) for the mainconfig element

of CaVaDSL for this case study is generated and shown in Listing 14.9.

Listing 14.9: Generated PHP code for creating the mainconfig element ac-

cording to mp.cava
1 <?php

2 $data = array(

3 ’lsTitle’=>"Museu da Pessoa",

4 ’about’=>array(

5 array(’p’=>"O Museu da Pessoa nasceu em S~ao Paulo ..."),

6 array(’p’=>"A partir da história de vida dos indivı́duos ..."),

7 array(’p’=>"Nesta vers~ao portuguesa do Museu da Pessoa ..."),

8),

9 ’carousel’=>array(

10 ’active’=>"true",

11 ’interval’=>5000,

12 ’images’=>array(

13 array(’caption’=>"Museu da Pessoa", ’src’=>"mp-capa.png", ’active’=>"true"),

14 array(’caption’=>"Projecto do Comércio Tradicional da Ribeira, Porto",

15 ’src’=>"001-F-06.jpg", ’active’=>"false"),

16),

17),

18 //continues with the exhibitions list element PHP code ...

190 Case Study 3 – Collection of life stories of MP

Notice that the only di↵erences from Listing 12.12 to the code of Listing 14.9

are the values on the right side of the ‘key-value’ pairs, i.e., the value of each

attribute.

At this point, CaVastructure recognizes the token “SPARQL” in the exhibition

room specification (mp.cava) and generates the exhibition rooms (client- and

server-side files). To exemplify the generated files, the specified exhibition 2

is taken. The client- and server-side generated files can be seen in Listings

14.10 and 14.11, respectively.

Listing 14.10: Automatically generated template code for an exhibition room

– “exhibition2.tpl”
1 {assign var=accordionID value=1}
2 {assign var=accordionName value=accordion}
3 {assign var=countID value=1}
4 {assign var=indexLabels value=0}
5 <div class="row">

6 <div class="container">

7 <div class="col-lg-12">

8 <div class="ibox float-e-margins {if $data.collapsed eq ’collapsed’}collapsed{/if}">
9 <div class="ibox-title">

10 <h5><i class="fa fa-file-o"></i> Pessoas e seus Eventos</h5>

11 <div class="ibox-tools">

12

13 <i class="fa fa-chevron-up"></i>

14

15 </div>

16 </div>

17 <div class="ibox-content">

18 <div class="panel-body">

19 <div class="panel-group" id="accordion">

20 {foreach from=$data item=i key=k}
21 {if $k neq "collapsed" and $k neq "labels"}
22 <div class="panel panel-default">

23 <div class="panel-heading">

24 <h5 class="panel-title">

25 <a data-toggle="collapse" data-parent="#accordion"

26 href="#{$accordionName}{$accordionID}">{$i[’0’]}
27

28 </h5>

29 </div>

30 <div id="{$accordionName}{$accordionID}" class="panel-collapse collapse">

31 {assign var=accordionID value=$accordionID+1}
32 <div class="panel-body">

33 <div class="col-md-12">

34 <div class="row">

35 <div class="col-md-9">

36 <h2 class="font-bold m-b-xs">{$i[’0’]}</h2>
37 </div>

38 </div>

39 {foreach from=$i item=j}
40 {if $j eq ""}
41 {assign var=indexLabels value=$indexLabels+1}
42 {elseif $j neq ""}
43 <div class="row col-md-12">

44 <hr>

45 </div>

46 <div class="row col-md-9">

14.5 CaVagen applied to the automatic generation of the Museum of
the Person virtual LS 191

47 <div class="label">{$data.labels[$indexLabels]}:</div>
48 {assign var=indexLabels value=$indexLabels+1}
49 <dl class="small m-t-md">

50 <dt class="label navy-bg">{$j}</dt>
51 </dl>

52 </div>

53 {/if}
54 {/foreach}
55 {assign var=indexLabels value=0}
56 </div>

57 </div>

58 </div>

59 </div>

60 {/if}
61 {/foreach}
62 </div>

63 </div>

64 </div>

65 </div>

66 </div>

67 </div>

68 </div>

Listing 14.11: Automatically generated PHP code for an exhibition room –

“exhibition2.php”
1 <?php

2 $sparqlQuery = "query2.rq";

3 $sparqlResult = "query2.json";

4 $mappingOrTriplesFile = "mp.rdf";

5 $IRIOntology = "http://semanticweb.org/rgm/2018/ontoMP/";

6 $jarFilePath = ".../rdf2jsonJena.jar ";

7 shell_exec($jarFilePath . " " . $sparqlQuery . " " . $sparqlResult

8 . " " . $mappingOrTriplesFile . " " . $IRIOntology);

9 $json = file_get_contents($sparqlResult);

10 $data = json decode($json, TRUE);

11 $data [’labels’] = array(

12 0 => "Entrevistado",

13 1 => "Tipo de Evento",

14 2 => "Descriç~ao do Evento",

15);

16 $data [’collapsed’] = "expanded";

17 $tpl = new SMTemplate();

18 $tpl->render(’exhibition2’, $data);

When an exhibition room (Listing 14.11) is accessed, the CaVarun processor

receives the content of “SPARQL” as a parameter (stored in a .rq file, as

“query2.rq” at line 2). CaVarun (in this case the “rdf2jsonJena.jar” at line 6)

will then execute (shell exec() at line 7) and generate the JSON result file

(as “query2.json” at line 3) with the instances found in the “MPD” dataset.

Summing it up, the generated “exhibition2.php” file performs six tasks:

1. receives as input:

192 Case Study 3 – Collection of life stories of MP

(a) “query2.rq” file as the SPARQL query;

(b) “query2.json” file to save the query’s result;

(c) “mp.rdf ” file as the RDF triples file generated by the XML2RDF

translator;

(d) OntoMP IRI (“http://semanticweb.org/rgm/2018/OntoMP/ ”);

(e) the program (“rdf2jsonJena.jar”) that in fact realizes the execu-

tion of the “query2.rq” file.

2. calls the shell exec() command with the received inputs;

3. gets the content of “query2.json”, filled by “rdf2jsonJena.jar”;

4. stores in $data the “query2.json” decoded content;

5. stores the labels for the SPARQL statement (Listing 14.7) and declares

a flag which defines the UI component behavior (expanded);

6. renders the exhibition room from the $data variable content. The last

two lines of Listing 14.11 mean that the variable $tpl (an instance of

the SMTemplate class) calls the method render (already defined in the

CaVa system), passing the array $data to render the Smarty template

exhibition2.tpl (see Listing 14.10). The placeholders of the exhibition2

template are filled with the $data array information, resulting in the

rendered exhibition2 (Figure 14.8) in Section 14.6. Every generated

exhibition room “.php” file, in CaVa, instantiates the SMTemplate class,

looking to render the associated template (“.tpl”) file.

In order to execute the SPARQL query of the specified exhibition rooms with

“rdf2jsonJena.jar”, CaVarun, sketched in Figure 10.5 for this case study, is

instantiated based on the following map:

• triples Specification 7! mp.rdf file;

• Repository 7! “MPD” dataset;

14.5 CaVagen applied to the automatic generation of the Museum of
the Person virtual LS 193

• Ontology (TBox) 7! OntoMP;

• Queries 7! SPARQL (.rq);

• Query Results 7! JSON (.json);

• CaVarun Processor 7! Jena Fuseki - ARQ reasoner;

Figure 14.3 displays the CaVarun schema instantiated.

Figure 14.3: Concrete instance of the CaVarun processor schema for the MP
virtual LS

Assuming the code of Listing 14.4 as the RDF triples (mp.rdf) already stored

in the “MPD” dataset through the TDB command-line utilities5 using the td-

bloader2 command, the schema of Figure 14.1 as the ontology (implemented

with CIDOC-CRM, FOAF, and DBpedia, as illustrated in Figure 14.2), and

the SPARQL queries of the exhibition rooms (to exemplify, the SPARQL

statement of exhibition 2, as seen between the lines 83 and 102 of Listing

14.7) to be executed by the CaVarun processor, its execution is carried out in

three steps:

1. Defines the SPARQL endpoint (“http://localhost:40000/MPD/sparql”)

and dataset to be queried (in this case, “MPD”), passing the query to

be executed. Listing 14.12 outlines the snippet for this specific task.

5 Available at: https://jena.apache.org/documentation/tdb/commands.html

https://jena.apache.org/documentation/tdb/commands.html

194 Case Study 3 – Collection of life stories of MP

Listing 14.12: Code snippet to define the SPARQL endpoint and the

dataset to be queried
1 import org.apache.jena.query.* ;

2 //...all the import statements necessary...

3

4 //read the content of the SPARQL query

5 queryString = new String(Files.readAllBytes(Paths.get("./query2.rq")));

6

7 //create the query object

8 Query query = QueryFactory.create(queryString);

9

10 //initialize the QueryExecutionFactory with remote service

11 QueryExecution queryExec = QueryExecutionFactory.sparqlService("http://localhost:40000/MPD/sparql", query);

2. Executes the query over the SPARQL endpoint and the “MPD” dataset,

getting the result set at the “res” variable. Listing 14.13 presents the

code to perform this action.

Listing 14.13: Code snippet to execute the SPARQL query over the

“MPD” dataset
1 ResultSet res = queryExec.execSelect();

3. Writes and formats the result of query2.rq as JSON, storing it in a

file (query2.json). Listing 14.14 shows the code snippet to execute this

task.

Listing 14.14: Code fragment to write the query results as JSON
1 //write to a ByteArrayOutputStream

2 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

3

4 //format the result as JSON

5 ResultSetFormatter.outputAsJSON(outputStream, res);

6

7 //turn the result (res) into a String

8 String sJson = new String(outputStream.toByteArray());

9

10 //write the String sJson to query2.json file to be read by exhibition2.php

11 try {

12 File jsonFile = new File("query2.json");

13 FileWriter wr = new FileWriter(jsonFile, false); // false to overwrite.

14 wr.write(sJson);

15 wr.close();

16 } catch (Exception e) {e.printStackTrace();}

After these three tasks are performed, the exhibition room (Listing 14.11)

handles the JSON result file content (fragment presented in Listing 14.15)

to display the instances in the virtual Learning Space exhibition room.

14.5 CaVagen applied to the automatic generation of the Museum of
the Person virtual LS 195

Listing 14.15: Fragment of the JSON result file generated by CaVarun–

“query2.json”
1 {

2 "0": {

3 "0": "Albertina da Conceiç~ao Soares",

4 "1": "Wedding",

5 "2": "Casei com 24 anos."

6 },

7 "1": {

8 "0": "António Oliveira Machado",

9 "1": "Catastrophic",

10 "2": "O ponto mais alto atingido pela água foi precisamente

11 no dia 2 de Janeiro de 1962. Nós só começamos a trabalhar

12 aqui no dia 22, mas a casa passou para nós no dia 2.

13 No dia do aniversário foi quando as cheias atingiram

14 o ponto mais alto. Isto também era antiquado, era um tasco

15 antiquado. A água partiu as portas, entre outras coisas.

16 A gente dali de fora a ver as portas abrirem-se e a fecharem

17 e as coisas a irem pela porta fora para o rio. Eu vim aqui

18 dentro buscar uma máquina de pesar e a água dáva-me pelo pescoço.

19 Mais de um metro e meio, quase dois metros."

20 },

21 //other JSON objects ...

22 "3": {

23 "0": "Caridade de Oliveira Matos",

24 "1": "Widowhood",

25 "2": "Fiquei viúva há 47 anos. O marido morreu tuberculoso.

26 Tive 5 filhos: três meninas e dois meninos. Morreram todos.

27 Com certeza o problema já vinha no sangue. Como o meu marido

28 morreu tuberculoso. O meu sogro já morreu tuberculoso.

29 Já morreram dois cunhados também. E isto já vinha no sangue.

30 Só uma menina é que morreu com menigite, aos oito meses.

31 Os outros nasciam muito gordos, muito bonitos, duravam ali

32 até aos dois anos, 20 meses. Depois, lá iam embora."

33 },

34 //other JSON objects ...

35 "6": {

36 "0": "Maria Alice Rodrigues Cacheira",

37 "1": "Childs Birth",

38 "2": "Depois passado dois meses de casada nasceu a minha primeira

39 filha, que eu já ia de bebé. Foi serviço adiantado."

40 },

41 //other JSON objects ...

42 }

The index “0” for each JSON Object is related to the respondent’s name.

The index “1” is about the event type, and the index “3” refers to the event

description. So, using the generated code and results, Section 14.6 depicts

some screenshots of the automatically generated Museum of the Person vir-

tual Learning Space.

196 Case Study 3 – Collection of life stories of MP

14.6 Rendering the final Museum of the Per-

son virtual LS with CaVarender

From the LS Scripts presented in Section 14.5 and generated by CaVagen,

CaVarender is the module in charge for recognizing and rendering them via

a web browser. This section depicts some screenshots of the rendered LS

Scripts, comprising the virtual Learning Space entitled “Museu da Pessoa”.

Figure 14.4 presents the initial web page when the visitor accesses the virtual

LS.

Figure 14.4: Initial web page of the Museum of the Person Learning Space

The initial page depicted in Figure 14.4 contains:

• themainconfig element rendered: it includes a carousel with two images

setting the first one with caption “Museu da Pessoa” as active (it means

that when the visitor opens the referred web page, the active image

will appear before the others) and a time (5 seconds) for the images

transition. In addition, the text about the museum is presented;

14.6 Rendering the final Museum of the Person virtual LS with
CaVarender 197

• the menu element rendered: it contains the brand “Museu da Pessoa”,

one dropdown menu “Exibições” including five sub-menus (“Todas”,

“Permanentes”, “Temporárias”, “Especiais”, and “Futuras”), which re-

fer to the exhibition room types, and a simple menu “Sobre” (about

the museum). In addition, the background color “purple” and the fore-

ground color “white” can be seen;

• the available until attribute rendered: a brief message advertising that

the temporary exhibition “Pessoas e Eventos” can be visualized until

the date “2018-09-01”. This date was specified in Listing 14.7, line 82.

This is a resource of temporary exhibition rooms. The message appears

for 7 seconds, every time that the initial web page is visited.

If the visitor of the “Museu da Pessoa” virtual Learning Space scrolls the

initial page (Figure 14.4) down, he/she will see four boxes. Each box is

related to an exhibition type (permanent, temporary, special, and future).

Figure 14.5 depicts the exhibition boxes.

Figure 14.5: All the exhibitions in the initial web page

In this case, as only two exhibition rooms (one permanent and one tempo-

rary) were specified, the two boxes below appear empty. The box “Exibições

Permanentes” shows the exhibition room “Projectos e Histórias de Vida”,

containing a short description, an icon “users”, and a button labeled “leia

mais”6 (read more), which leads to the page that lists all the permanent exhi-

bitions. The same occurs with the box “Exibições Temporárias” (Temporary

6 Each box contains a button to access the list of exhibitions of that specific type.

198 Case Study 3 – Collection of life stories of MP

Exhibitions), that contains an exhibition room “Pessoas e Eventos”. This

box has the “leia mais” button, an icon “calendar”, the exhibition title, and

the exhibition short description.

Figure 14.6 shows a list of all exhibition rooms, which can be accessed through

the menu “Exibições->Todas”.

Figure 14.6: Exhibitions list accessed via the menu element

Additionally to themenu and footer elements, Figure 14.6 depicts a list of the

two specified exhibition rooms, containing a box for each one. The first box

is related to the “Projectos e Histórias de Vida” permanent exhibition room.

It contains a title, an icon “users”, a short description, and an additional

info (title “13” and description “Pessoas”). In addition, the box appears

“Expanded” (denoted by the chevron-up icon in the top right corner). The

same occurs with the temporary exhibition room “Pessoas e Eventos” of

the next box. This exhibition consists of a title, an icon “calendar”, a short

description, an additional info (title “5” and description “Tipos de Eventos”),

and a behavior “Expanded”. Notice that this list can be accessed via the

menu options or through the initial page (not for all exhibitions, but for a

specific type of), as already explained.

14.6 Rendering the final Museum of the Person virtual LS with
CaVarender 199

The footer element of Figure 14.6 is composed of images (like the CaVa logo),

format date “2018”, developer name “Ricardo G. Martini”, behavior “fixed”,

which means the footer does not follow the scrolling of the page. In addition,

the links for social networks “Redes Sociais”, partners “Parceiros”, and for

the other version of the Museum of the Person “Museu da Pessoa” are shown.

To illustrate the exhibition rooms, Figures 14.7 and 14.8 presents the content

of the permanent exhibition1 and the temporary exhibition2, respectively.

Figure 14.7: Permanent exhibition room “Projectos e Histórias de Vida”

The exhibition room depicted in Figure 14.7 shows the instances taken from

the query1.json file (similar to the JSON file of Listing 14.15).

200 Case Study 3 – Collection of life stories of MP

Figure 14.8: Temporary exhibition room “Pessoas e Eventos”

The exhibition room illustrated in Figure 14.8 presentes the instances taken

from the query2.json file (see Listing 14.15).

Notice that for the two exhibition rooms, the headerOfEachElement, specified

in Listing 14.7 lines 63 and 102, is used in the exhibitions template (denoted

by “$i[‘0’]” at line 26 of Listing 14.10) to render, in this case, the respon-

dent name (for exhibition1, the name “Albertina da Conceição Soares”; for

exhibition2, the names “Albertina da Conceição Soares”, “António Oliveira

Machado”, “Caridade de Oliveira Matos”, and “Maria Alice Rodrigues

Cacheira”).

Figures 14.7 and 14.8 present the result set instances achieved from the triple

store database and the labels written in the CaVaDSL specification of Listing

14.7.

14.7 Summary 201

14.7 Summary

The main objective of this case study was to apply a di↵erent approach of

storing the sources described in RDF triples in a triple store to automati-

cally generate the Museum of the Person virtual Learning Space based on a

specification written in CaVaDSL and ontologies.

This case study presented the development and use of the OntoMP ontology,

which was conceived in the master thesis of Cristiana Araújo [Araújo, 2016].

To deal with the Museum of the Person XML assets, a translator (XML2RDF)

was explained and used for this case study. This translator was also conceived

in [Araújo, 2016]. The objective of XML2RDF was to transform the XML

input files, which tell life stories of ordinary people, to RDF triples. To

store the generated RDF triples, an Apache Jena TDB dataset (MPD) was

created.

Having all the prerequisites, a CaVaDSL specification was written, with the

purpose of describing the Museum of the Person virtual LS to be generated

by the CaVagen set of processors. In order to automatically generate the LS

Scripts for the desired final virtual LS, the generation process lead by CaVagen

was explained.

Once again, as this case study deals with important documents, which tell life

stories of people, aiming at writing up the stories of families, communities, or

institutions (interesting social and cultural matters), social studies can also

be developed.

As future work, other interviews can be recorded and transcribed to XML,

generating more assets to the Museum of the Person, and consecutively,

more exhibition rooms with di↵erent and attractive stories of life might be

generated.

Chapter 15 concludes this thesis, shows the contributions, and gives the

directions for future work. In addition, the case studies general analysis is

done.

Chapter 15

Conclusion

The main goal of this PhD work was, through the collected information

of cultural institutions, to allow their curators to describe virtual Learning

Spaces, which are automatically generated.

People who are from other areas than computer science normally do not

know about programming logic. In the museological area it is no di↵erent.

So, it is a hard task to the Curator to build a virtual museum as a Learning

Space with exhibition rooms. Because of that, the museums’ person in charge

commonly hire a third party service to perform this task. This is an expensive

approach (it costs time and money).

So, in this work, the CaVa architecture was designed and developed to deal

with this kind of problems, letting the Curator organize and exhibit the col-

lections of the museum in exhibition rooms through a high-level specification

written in CaVaDSL, without knowledge about data persistence or program-

ming logic. The Curator only needs to know about his duties, regarding

object exhibitions.

The description of virtual Learning Spaces in a simple language, directed

to a specific user, boosts the generation of virtual Learning Environments

and empowers the responsible of the cultural institution to focus only on

the content exposure (the structure of the exhibition rooms), arranging this

203

204 Conclusion

content in a way that the user deems most appropriate. This eliminates

any problem regarding the learning of various general-purpose programming

languages by the person in charge of the cultural institution. This means

that learning the CaVaDSL language is enough to specify and generate the

desired virtual Learning Space.

To cope with the CaVaDSL specifications to finally generate the virtual Learn-

ing Spaces, a set of processors (CaVagen) was designed and developed.

All the necessary subjects related to the scope of this thesis were studied and

presented in Part I, while the proposal and the CaVa platform blocks were

introduced in Part II.

15.1 Revisiting objectives and results

Regarding the main goal of this PhD research, which was automating the gen-

eration of virtual Learning Spaces based on ontologies and a Domain-Specific

Language, two specific objectives were formulated in Chapter 1. These ob-

jectives are revisited here and the main achieved results are highlighted.

1. Create a formalism (DSL) to rigorously describe virtual Learn-

ing Spaces taking into account the domain ontology

The achievement of this objective, addressed in Chapter 9, resulted in

the design and development of an external Domain-Specific Language,

CaVaDSL, which allows the specification of a virtual Learning Space

based on a controlled domain ontology vocabulary. The development of

CaVaDSL followed the design guidelines presented in Section 4.3. This

CaVaDSL formalism was built with the purpose of fostering the CH

Curator to specify a virtual Learning Space from his/her perspective.

The use of CaVaDSL in real case studies allowed a comprehensive evalua-

tion of the application of the developed language. The CaVaDSL specifi-

cation outcome for each case study was presented in Part III (Chapters

15.1 Revisiting objectives and results 205

12, 13, and 14) dealing with two di↵erent approaches concerning the

method to access the instances stored in the digital repository. After

applying CaVaDSL for three di↵erent scenarios, the analysis of the devel-

opment of the language, following the criteria of [Visser, 2008], shows

that it comprises:

• Expressivity : specifying virtual LS in the context of this work, in

CaVaDSL, is light and requires less e↵ort compared with program-

ming in several general-purpose languages. To measure the issue

of less e↵ort in practice, a good approach is to compare the lines of

code written and generated1. For the developed case studies, the

number of written lines were 76, 57, and 182, respectively. The

number of generated lines only for the related parts of the virtual

LS (main configuration, header, content, and footer) were 1100+

without counting the stylesheets and JavaScript code, which are

required for the system to work properly;

• Coverage: CaVaDSL provides elements and structure to create vir-

tual LS independent of its domain;

• Completeness : the generator (CaVagen) that handles CaVaDSL,

generates complete code. This means that there is no need to

complement the generated code;

• Portability : CaVaDSL is an abstract language, not tightly related

to the generated code (only with the parts that a web application

must have), so the portability to other implementation platforms

such as Java, Ruby on Rails, Python, etc. is guaranteed;

• Extensibility : CaVaDSL was designed to be extensible, in order to

hold the conception of future elements. Extending CaVagrammar

makes it possible to create new elements and sub-languages for

CaVaDSL.

2. Develop a mechanism to automatically generate the virtual

LS from its formal specification

1 Probably the generated code is not necessarily as compact as if written manually.

206 Conclusion

The fulfillment of this specific objective, discussed in Chapter 10, re-

sulted in the development of CaVagen, a set consisting of four processors,

which deal with the CaVaDSL specifications, generating the static and

dynamic content, and the structure of virtual Learning Spaces. CaVagen

was applied for three di↵erent case studies presented in Chapters 12,

13, and 14, producing the desired outcomes.

15.2 Main Contributions and Thesis

Based on the initial objectives and the achieved results, this section lists the

main contributions of this work:

• Proposal of an architecture (CaVa) to automatically generate virtual

Learning Spaces based on ontologies and a Domain-Specific Language

[Martini et al., 2016c];

• Proposal of an external DSL (CaVaDSL) to specify virtual Learning

Spaces [Martini and Henriques, 2017b];

• Proposal of a set of processors (CaVagen) to deal with the CaVaDSL spec-

ifications [Martini and Henriques, 2017b];

• Design of three ontologies for the real proposed case studies domains, re-

spectively [Martini et al., 2016b], [Martini and Henriques, 2017b], and

[Martini et al., 2016a];

• Development of an international project in cooperation with Fafe’s Mu-

nicipal Archive, funded by the ADAI program of Iberarchivos, in which

bdME and SGPE are included [Martini et al., 2015] and the project

website2;

• Development of the three real case studies scenarios to validate CaVa,

respectively [Martini et al., 2017], [Martini and Henriques, 2017b], and

[Martini et al., 2018].

2 Available at: http://bit.ly/2p3tC2S

http://bit.ly/2p3tC2S

15.3 Topics of Future Work 207

These contributions support the statement that the Research Hypothesis has

been proved: it is feasible to automatically create virtual Learning Spaces, as

web pages, based on an ontology — that describes an institutional information

repository — and on a DSL specification — that defines which concepts should

be exhibited and how they should be placed in the final virtual Learning Space.

15.3 Topics of Future Work

Several topics were identified as interesting directions for future work. Some

of the topics listed below are technical issues that may improve particular

aspects of CaVa, the platform developed in this doctoral project. But also

some ideas, at a more conceptual/abstract level, will be pointed out below.

Technical work

• Improvements in the UI : creation of filters and sorting tools to prepare

the returned data (query results) to display in the exhibition rooms;

creation of new templates; creation of a di↵erent way to navigate over

the concepts of the ontology. Maybe include a graphical picture of the

ontology in the virtual LS;

• CaVaDSL extension: creation of new language elements (e.g., operators

to define tables to display the queried data, maps, charts, etc); defini-

tion of new templates through CaVaDSL; specification of more than one

query by exhibition room; development of tools to aid the Curator in

the specification of a virtual LS (e.g., intelligent code completion tool

for the concepts and properties of the ontology, graphical tools, etc.);

• CaVagen portability : development of new case studies targeting di↵erent

languages and based on di↵erent digital repositories and new ontologies.

This implies more research for new approaches for the mapping issues;

208 Conclusion

• CaVa performance: improve query performance with approaches like

cache system, etc.

Research work

Requiring a higher level of research, some other proposals can be listed:

• Regarding the ontology :

– verify whether the CIDOC-CRM standard is enough and appro-

priate to describe the ontologies associated with other kind of cul-

tural institutions, like archives and libraries, or if new description

approaches need to be considered to cope with those new assets;

– study new options to implement the system storage, conducting

tests on di↵erent digital repositories. For example, NoSQL, as

graph databases, Document-Oriented databases, Object-Oriented

databases, etc. Those tests shall be designed to check whether

those alternatives are a good solution for storing large amounts of

data;

– look for other approaches regarding the connection between the

digital repository and the ontology when di↵erent storage systems

are used. The mapping step is a crucial issue in this proposal as it

allows to query over the repository instances, so other alternatives

shall be explored, namely R2RML must be considered.

• Regarding the virtual Learning Space specification:

– draw and conduct experiments to appraise the usability and the

e�ciency of CaVaDSL, as well as attest whether the Curator is

capable of actually describing virtual Learning Spaces.

• Regarding the final virtual Learning Space:

15.3 Topics of Future Work 209

– Conduct tests with end-users (visitors) to identify if they really

can learn about the domain in which the virtual Learning Envi-

ronment is embedded, as well as identify which are the best ways

to learn. Is the navigation over concepts really the best technique?

Appendices

211

Appendix A

Generated and used grammars

A.1 CaVagrammar

This appendix presents the developed ANTLR version of CaVagrammar (see

Listing A.1).

Listing A.1: ANTLR version of CaVagrammar

1 grammar cava;

2

3 cava: mainConfig header content footer ;

4

5 mainConfig: ’mainconfig’ leftBracket learningSpaceTitle learningSpaceAbout? learningSpaceCarousel? rightBracket;

6

7 learningSpaceTitle: ’LS’ ’title’ colon TEXT comma ;

8 learningSpaceAbout: ’about’ leftBracket (learningSpaceAboutParagraphs)+ rightBracket ;

9 learningSpaceAboutParagraphs: ’p’ colon TEXT comma ;

10 learningSpaceCarousel: ’carousel’ leftBracket (optionLearningSpaceCarousel)+ rightBracket ;

11 optionLearningSpaceCarousel: images | interval ;

12 images: ’images’ leftBracket (optionLearningSpaceCarouselConfig)+ rightBracket ;

13 optionLearningSpaceCarouselConfig: ’caption’ colon TEXT comma ’src’ colon TEXT comma imageActive ;

14 imageActive: (active comma)? ;

15 active: ’active’ ;

16 interval: ’interval’ colon INT comma ;

17

18 header: ’menu’ leftBracket (optionHeader)+ rightBracket ;

19

20 optionHeader: brand | backgroundColor | fontColor | behaviourStat | items ;

21 brand : ’brand’ colon TEXT comma ;

22 backgroundColor: ’background’ ’color’ colon colorAlternative comma ;

23 fontColor: ’foreground’ ’color’ colon colorAlternative comma ;

24 behaviourStat: ’behavior’ colon headerBehaviour comma ;

25 items: ’options’ leftBracket (label)+ rightBracket ;

26 label : labelSimples | labelDropdown ;

27 labelSimples: ’label’ colon TEXT comma ’url’ colon TEXT comma ’extension’ colon EXTENSION comma ;

28 labelDropdown: ’label’ colon TEXT comma dropdown ;

29 dropdown: ’dropdown’ leftBracket (dropdownList)+ rightBracket ;

213

214 Generated and used grammars

30 dropdownList : ’dropdown’ ’label’ colon TEXT comma ’url’ colon TEXT comma ;

31 headerBehaviour : ’fixed’ | ’static’ ;

32

33 content: exhibitions ;

34

35 exhibitions: ’exhibitions’ leftBracket (exhibition)+ rightBracket ;

36 exhibition: ’exhibition’ leftBracket (optionExhibition)+ rightBracket ;

37 optionExhibition: exhibitionTitle

38 | exhibitionShortDescription

39 | exhibitionIcon

40 | exhibitionBehaviour

41 | exhibitionAdditionalInfo

42 | exhibitionType

43 | exhibitionNotification

44 | (queryOperators | sparql)

45 ;

46 queryOperators : all | one ;

47 all : CONCEPT separator ’all’ leftParenthesis parametersAll rightParenthesis labelsOptions ;

48 one : CONCEPT separator ’one’ leftParenthesis parametersOne rightParenthesis labelsOptions ;

49 sparql : ’SPARQL’ leftBracket sparqlStatement rightBracket labelsOptions ;

50 sparqlStatement: TEXT ;

51 separator : ’->’ ;

52 leftParenthesis : ’(’ ;

53 rightParenthesis: ’)’ ;

54 parametersAll : listName comma mappingOrTriplesFileName comma ontologyFileName ;

55 parametersOne : listName comma mappingOrTriplesFileName comma ontologyFileName ;

56 listName : TEXT ;

57 mappingOrTriplesFileName : TEXT ;

58 ontologyFileName : TEXT ;

59 labelsOptions : leftBracket (labelsExhibitionRoom)+ rightBracket ;

60 labelsExhibitionRoom : elem (comma elem)* ;

61 elem : TEXT | headerOfEachElement ;

62 headerOfEachElement : ’headerOfEachElement’ colon TEXT ;

63 exhibitionTitle: ’title’ colon TEXT comma ;

64 exhibitionShortDescription: ’short’ ’description’ colon TEXT comma ;

65 exhibitionIcon: ’icon’ colon TEXT comma ;

66 exhibitionBehaviour: ’behavior’ colon behaviourOptionExhibition comma ;

67 behaviourOptionExhibition: ’expanded’ | ’collapsed’ ;

68 exhibitionAdditionalInfo: ’additional’ ’info’ leftBracket (additionalInfoOptionExhibition)+ rightBracket ;

69 additionalInfoOptionExhibition: additionalInfoTitle | additionalInfoDescription ;

70 additionalInfoTitle: ’title’ colon TEXT comma ;

71 additionalInfoDescription: ’description’ colon TEXT comma ;

72 exhibitionType: ’type’ colon typeOptionExhibition comma ;

73 typeOptionExhibition: ’permanent’

74 | ’temporary’

75 | ’special’

76 | ’future’

77 ;

78 exhibitionNotification: ’available’ ’until’ colon TEXT comma ;

79

80 footer: ’footer’ leftBracket (optionFooter)+ rightBracket ;

81

82 optionFooter: footerImage | footerFormatDate | footerDeveloper | footerBehavior | footerStyle ;

83 footerImage: ’images’ leftBracket (imageOptions)+ rightBracket ;

84 imageOptions: image | alignment ;

85 image: ’image’ colon TEXT comma ;

86 footerFormatDate: ’format date’ colon DATE comma ;

87 footerDeveloper: ’developer’ leftBracket (developerOptions)+ rightBracket ;

88 developerOptions: developer | alignment ;

89 developer: ’name’ colon TEXT comma ;

90 alignment: ’alignment’ colon alignmentOption comma ;

91 alignmentOption: ’left’ | ’right’ ;

92 footerBehavior: ’behavior’ colon footerBehaviorOption comma ;

93 footerBehaviorOption: ’fixed’ | ’static’ ;

94 footerStyle: ’style’ colon footerStyleOption ;

95 footerStyleOption: extended | ’condensed’ comma ;

96 extended: ’extended’ leftBracket (footerExtendedOptions)+ rightBracket ;

A.1 CaVagrammar 215

97 footerExtendedOptions: ’title’ colon TEXT comma ’subtitle’ colon

98 TEXT leftBracket (footerExtendedOptionsExtended)+ rightBracket ;

99 footerExtendedOptionsExtended: ’label’ colon TEXT comma ’link’ colon TEXT comma

100 ’icon’ colon TEXT comma ’icon color’ colon colorAlternative comma ;

101 leftBracket : ’[’ ;

102 rightBracket : ’]’ ;

103 colon : ’:’ ;

104 comma : ’,’ ;

105

106 colorAlternative: COLORNAME | HEXCODE ;

107 COLORNAME : ’aqua’

108 | ’black’

109 | ’blue’

110 | ’crimson’

111 | ’fuchsia’

112 | ’gray’

113 | ’green’

114 | ’lime’

115 | ’maroon’

116 | ’navy’

117 | ’olive’

118 | ’orange’

119 | ’purple’

120 | ’red’

121 | ’silver’

122 | ’teal’

123 | ’white’

124 | ’yellow’

125 ;

126

127 HEXCODE : ’#’ HEX_DIGIT+;

128 DATE : DATE_DIGIT+;

129 TEXT: STRING ;

130 EXTENSION : [a-zA-Z]+ ;

131

132 fragment

133 DATE_DIGIT : ’"’(’Y’ | ’y’ | ’M’ | ’m’ | ’D’ | ’d’)+’"’ ;

134

135 fragment

136 STRING

137 : ’"’ (ESC_SEQ | ~(’"’))* ’"’ ;

138

139 fragment

140 ESC_SEQ

141 : ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)

142 | UNICODE_ESC

143 | OCTAL_ESC

144 ;

145

146 fragment

147 OCTAL_ESC

148 : ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)

149 | ’\\’ (’0’..’7’) (’0’..’7’)

150 | ’\\’ (’0’..’7’)

151 ;

152

153 fragment

154 UNICODE_ESC

155 : ’\\’ ’u’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT ;

156

157 fragment

158 HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;

159

160 INT : [0-9 .]+ ;

161 CONCEPT : [a-zA-Z0-9 .]+ ;

162 LINECOMMENT : ’#’ ~[\r\n]* -> channel(HIDDEN) ;

163 WS : [\t\r\n\f]+ -> channel(HIDDEN) ;

216 Generated and used grammars

A.2 OBDA Ontop grammar (cavaSPARQL)

This appendix presents the developed ANTLR version of the cavaSPARQL

grammar (see Listing A.2).

Listing A.2: ANTLR version of CaVaSPARQL grammar
1 grammar cavaSPARQL;

2

3 cavaSPARQL : (mappingid comma target)+ ;

4

5 target : uri relation object (relations)* period ;

6 mappingid : VALUE ;

7 concept : prefix colon VALUE ;

8 comma : ’,’ ;

9 uri : prefix colon uriprefix VALUE hashtag leftBracket VALUE rightBracket ;

10 relations : semicolon relation object ;

11 uriprefix : ’URI/’ ;

12 hashtag : ’#’ ;

13 leftBracket : ’{’ ;

14 rightBracket: ’}’ ;

15 relation : rdftype | predicate ;

16 rdftype : ’a’ ;

17 predicate : prefix colon VALUE ;

18 prefix : VALUE ;

19 colon : ’:’ ;

20 object : uri | concept | placeholder | string ;

21 string : STRING ;

22 placeholder : leftBracket VALUE rightBracket ;

23 semicolon : ’;’ ;

24 period : ’.’ ;

25

26 VALUE : [a-zA-Z][a-zA-Z0-9 .-]* ;

27 STRING : ’"’ [a-zA-Z0-9 .]+ ’"’ ;

28 WS : [\t\r\n]+ -> skip ;

Appendix B

Passport Application Form

Data

The following list shows the data needed to get a passport by an emigrant.

• General data about the emigrants documents: Emigrants docu-

ment number in City Council; Emigrants document Number in Board

of Emigration; and Year.

Meaning: data that identifies the emigration’s documents.

• General data about the emigrant: Name; Nationality; Date of

Birth; Filiation; Civil Status; Name of Spouse; Number of Identity;

and Residence.

Meaning: data that identifies the emigrant, their parents, the spouse

and address (residence).

• Data of the applicant: Name; Residence (place and town (parish));

and, Country and location.

Meaning: data that identifies the applicant and location that he in-

tends to emigrate.

217

218 Passport Application Form Data

• Dispatching1: Date that the emigration document was sent; Number

of the craft; Date that was granted; Number of the license of emigration;

Passport number; Ship, class and company; and Boarding date.

Meaning: data that identifies the dispatch of the documents of the

emigrant.

• Attached documents: Several documents such as: medical certifi-

cate, birth certificate, marriage certificate, work contract, etc.

Meaning: documents provided to get a visa. There is a list of docu-

ments to be marked as checked when the applicant deliver them.

• Family members accompanying the emigrant: Name; Date of

Birth; Age; kinship with the emigrant; and literary qualifications.

Meaning: data that identifies the members of family that accompa-

nying the emigrant.

• Desired type of transportation: Desired type of transportation;

Approximate date of shipment; If the pass on the company is paid;

Port of Boarding; and Port of landing.

Meaning: data that identifies the desired type of transportation by

the emigrant. These data are grouped as ”Boarding” in the emigration

documents.

• Qualifications (literary and professional) and criminal records:

Current occupation; Literary qualifications; Entity where worked; If the

applicant has already been judged by the courts; If the applicant or his

relatives have any case pending.

Meaning: data that identifies the literary and professional qualifica-

tions of the applicant, as well as data about the emigrant’s criminal

records.
1 Portuguese: expediente

219

• Family members in charge of the emigrant who remain in the

country: Name; Age; kinship with the emigrant; and Residence of

each person of the family.

Meaning: data that identifies the family members in charge of the

emigrant who remain in the country.

• Previous travel abroad: Whether or not it is the first time that the

applicant is traveling; Date on which returned; Passport number and

date; Entity that issued the passport; Whether or not the applicant

came repatriated; Reasons for repatriation; and if the applicant has

already submitted a request to emigrate.

Meaning: data that identifies if is the first time that the applicant is

traveling to another country.

• Details of the person calling the emigrant: Name; Residence;

kinship of the emigrant with the caller; How long is resident in the

country that the emigrant goes; and Data of the passport that the

caller did leave the country.

Meaning: data that identifies the caller who is calling the emigrant

to the destination country.

• Employment contract: Name and Residence of the contractor; If

the applicant knows the contractor and since when; If the applicant

does not know the contractor, how it obtained the contract; Name,

residence, occupation and filiation of the intermediary; Passport that

the intermediary did leave the country; kinship of the applicant with the

intermediary and how much was paid or has to pay for the employment

contract.

Meaning: data that identifies the contractor and the intermediary, if

exists.

• Details about women and minors employed: Whether or not

already worked to the contractor or to the family of him/her; Duration

of the work; Occupation.

220 Passport Application Form Data

Meaning: data that identifies women and minor employed.

• Details of the married men who leave the family in the country

of origin: Knowledge of wife about the target location of her husband;

and if the wife considers that her maintenance is assured by the husband

in the country that she stays.

Meaning: data about the married man who leaves the family in the

country of the origin. This data (statement) should be provided by the

wife of the married man.

• Aid in the destination country: Whether or not the applicant has

family in the destination country; Name of the people who will give

the aids; Degree of kinship; Residence; Occupation; How long he/she

lives in that country; What are the possibilities to provide assistance;

If the person who will give assistance has already traveled to Portugal.

If yes, when and the length of stay; If has maintained correspondence

with these relatives; If the relatives know the applicant’s claim and

vowed to assist it; and how it will help the applicant in the country of

destination.

Meaning: data about the people who will aid the emigrant in the

destination country.

Appendix C

Logical and Physical Model of

bdME

Figure C.1 presents the logical model of bdME.

221

222 Logical and Physical Model of bdME

Figure C.1: Logical model of the database

Figure C.2 illustrates the physical model of bdME.

223

Figure C.2: Physical model of the bdME

Appendix D

Physical Model of bdFasti

Figure D.1 illustrates the physical model of bdFasti.

225

226 Physical Model of bdFasti

Figure D.1: Physical model of bdFasti

Bibliography

[ACCU, 1998] ACCU (1998). Preservation and Promotion of the Intangible

Cultural Heritage. Asia-Pacific Cultural Centre for UNESCO (ACCU) 6,

Fukuromachi, Shinjuku-ku Tokyo.

[Allemang and Hendler, 2011] Allemang, D. and Hendler, J. (2011). Seman-

tic Web for the Working Ontologist: E↵ective Modeling in RDFS and

OWL. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2

edition.

[Almeida et al., 2001] Almeida, J. J., Rocha, J. G., Henriques, P. R., Mor-

eira, S., and Simões, A. (2001). Museu da Pessoa – arquitectura. In

Encontro Nacional da Associação de Bibliotecários, Arquivista e Docu-

mentalistas, ABAD’01. BAD.

[Araújo et al., 2017] Araújo, C., Henriques, P. R., and Martini, R. G. (2017).

Automatizing ontology population to drive the navigation on virtual learn-

ing spaces. In 2017 12th Iberian Conference on Information Systems and

Technologies (CISTI), pages 1–6.

[Araújo, 2016] Araújo, C. E. (2016). Building the Museum of the Person

based on a combined CIDOC-CRM - FOAF - DBpedia Ontology. Master’s

thesis, Universidade do Minho, Braga, Portugal.

[Bartalos and Bieliková, 2007] Bartalos, P. and Bieliková, M. (2007). An

approach to object-ontology mapping. In Slovak University of Technology,

pages 9–16.

[Brown, 2005] Brown, M. (2005). Learning spaces. EDUCAUSE e-Books,

pages 12.2–12.22.

227

228 BIBLIOGRAPHY

[Cadavid et al., 2009] Cadavid, J. J., Quintero, J. B., Lopez, D. E., Hincapié,

J. A., Brogi, A., João, A., and Anaya, R. (2009). A domain specific

language to generate web applications. In CIbSE, pages 139–144.

[Callaghan et al., 2009] Callaghan, M., McCusker, K., Losada, J., Harkin,

J., and Wilson, S. (2009). Integrating virtual worlds & virtual learning

environments for online education. In Games Innovations Conference,

2009. ICE-GIC 2009. International IEEE Consumer Electronics Society’s,

pages 54–63.

[Carvalho, 2014] Carvalho, N. (2014). Conclave: writing programs to under-

stand programs. PhD dissertation, Universidade do Minho, Braga, Portu-

gal.

[Ceh et al., 2011] Ceh, I., Crepinsek, M., Kosar, T., and Mernik, M. (2011).

Ontology driven development of domain-specific languages. Comput. Sci.

Inf. Syst., 8(2):317–342.

[Centre, 2005] Centre, W. H. (2005). World Heritage Information Kit. Un-

esco World Heritage Centre.

[da Purificação and Silva, 2009] da Purificação, C. E. P. and Silva, P. C.

(2009). A domain-specific language for modeling web user interactions

with a model driven approach. In Matti Rossi, Jonathan Sprinkle, J. G.

and Tolvanen, J.-P., editors, Proceedings of the 9th OOPSLA Workshop

on Domain Specific Modelling, DSM’09, Orlando, USA. Helsinki School of

Economics.

[da Silva Nascimento, 2009] da Silva Nascimento, J. (2009). Emigração

madeirense para a venezuela (1940-1974). Master’s thesis, Dissertação

submetida à Universidade da Madeira para obtenção do Grau de Mestre

em Estudos Interculturais – Estudos Luso-Brasileiros. Universidade da

Madeira.

[Das et al., 2012] Das, S., Sundara, S., and Cyganiak, R. (2012). R2RML:

RDB to RDF mapping language. Technical report, W3C.

BIBLIOGRAPHY 229

[Davallon, 1986] Davallon, J. (1986). Claquemurer, pour ainsi dire, tout

l’univers: La mise en exposition. Alors (Paris. 1983). Centre Georges

Pompidou, Centre de création industrielle.

[Desvallées, 2010] Desvallées, A. (2010). Key Concepts of Museology. Ar-

mand Colin.

[Deursen et al., 2000] Deursen, A. V., Klint, P., and Visser, J. (2000).

Domain-specific languages: An annotated bibliography. ACM SIGPLAN

NOTICES, 35:26–36.

[Doerr, 2009] Doerr, M. (2009). Ontologies for Cultural Heritage. Springer

Publishing Company, Incorporated.

[Doerr et al., 2003] Doerr, M., Hunter, J., and Lagoze, C. (2003). Towards

a core ontology for information integration. J. Digit. Inf., 4(1).

[Ekwelem et al., 2011] Ekwelem, V. O., Okafor, V. N., and Ukwoma, S. C.

(2011). Preservation of cultural heritage: The strategic role of the library

and information science professionals in south east nigeria. Library Phi-

losophy and Practice.

[Feather, 2006] Feather, J. (2006). Managing the documentary heritage: is-

sues fro the present and future.

[Fensel, 2000] Fensel, D. (2000). Relating ontology languages and web stan-

dards.

[Fonseca, 2014] Fonseca, J. (2014). Converting ontologies into dsls. Master’s

thesis, Universidade do Minho, Campus Gualtar, Braga, Portugal.

[Fowler, 2010] Fowler, M. (2010). Domain-Specific Languages. Addison-

Wesley Signature Series (Fowler). Pearson Education.

[Franconi, 2008] Franconi, E. (2008). Ontologies and databases: Myths and

challenges. Proc. VLDB Endow., 1(2):1518–1519.

230 BIBLIOGRAPHY

[Gali et al., 2004] Gali, A., Chen, C. X., Claypool, K. T., and Uceda-Sosa, R.

(2004). Conceptual Modeling for Advanced Application Domains: ER 2004

Workshops CoMoGIS, CoMWIM, ECDM, CoMoA, DGOV, and eCOMO,

Shanghai, China, November 8-12, 2004. Proceedings, chapter From Ontol-

ogy to Relational Databases, pages 278–289. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[Gava and Menezes, 2003] Gava, T. B. S. and Menezes, C. S. D. (2003). Uma

ontologia de domı́nio para a aprendizagem cooperativa. XIV Simpósio

Brasileiro de Informática na Edução NCE IMUFRJ, pages 336–345.

[Ghiselli et al., 2005] Ghiselli, C., Trombetta, A., Bozzato, L., and Binaghi,

E. (2005). Semantic web meets virtual museums: The domus naturae

project.

[Ghosh, 2011] Ghosh, D. (2011). DSLs in Action. Manning Pubs Co Series.

Manning.

[Goos, 2006] Goos, M. (2006). Creating learning spaces. The Annual

Clements/Foyster Lecture.

[Gorman and Shep, 2006] Gorman, G. and Shep, S. (2006). Preservation

Management for Libraries, Archives and Museums. Henry Ford Estate

collection. Facet.

[Gruber, 1993] Gruber, T. R. (1993). Toward principles for the design of

ontologies used for knowledge sharing. In International Journal of Human-

Computer Studies, pages 907–928. Kluwer Academic Publishers.

[Guarino, 1997] Guarino, N. (1997). Understanding, building and using on-

tologies: A commentary to using explicit ontologies in kbs development.

International Journal of Human and Computer Studies, pages 293–310.

[Hess et al., 2015] Hess, M., Robson, S., Serpico, M., Amati, G., Pridden, I.,

and Nelson, T. (2015). Developing 3d imaging programmes–workflow and

quality control. J. Comput. Cult. Herit., 9(1):1:1–1:11.

BIBLIOGRAPHY 231

[Hudak, 1998] Hudak, P. (1998). Modular domain specific languages and

tools. In Proceedings of the 5th International Conference on Software

Reuse, ICSR ’98, pages 134–, Washington, DC, USA. IEEE Computer

Society.

[Hürst et al., 2016] Hürst, W., Tan, X. J., and de Coninck, F. (2016). Using

digital extensions to create new vr museum experiences. In Proceedings

of the 13th International Conference on Advances in Computer Entertain-

ment Technology, ACE ’16, pages 45:1–45:6, New York, NY, USA. ACM.

[Hyvonen, 2009] Hyvonen, E. (2009). Semantic portals for cultural heritage.

In Handbook on Ontologies, pages 757–778. Springer Publishing Company,

Incorporated.

[Hyvönen et al., 2005] Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Vil-

janen, K., Saarela, S., Junnila, M., and Kettula, S. (2005). Museumfinland-

finnish museums on the semantic web. Web Semant., 3(2-3):224–241.

[ICOM/CIDOC, 2015] ICOM/CIDOC (2015). Definition of the CIDOC

Conceptual Reference Model. Technical report, ICOM/CIDOC.

[Inukai et al., 2007] Inukai, Y., Gehrmann, A., Nagai, Y., and Ishizu, S.

(2007). Rough set theory using similarity of objects described by ontol-

ogy. In Proceedings of the 51st Annual Meeting of the ISSS - 2007, Tokyo,

Japan.

[Ivey, 2004] Ivey, B. (2004). Issues in intangible cultural heritage. Technical

report, Council on Library and Information Resources.

[Jaligama and Liarokapis, 2011] Jaligama, V. and Liarokapis, F. (2011). An

online virtual learning environment for higher education. In Games and

Virtual Worlds for Serious Applications (VS-GAMES), 2011 Third Inter-

national Conference on, pages 207–214.

[Jaén et al., 2005] Jaén, J., Mochoĺı, J. A., Esteve, J. M., Bosch, V., and

Canós, J. H. (2005). Momo: Enabling social multimedia experiences in

hybrid museums.

232 BIBLIOGRAPHY

[Jorge et al., 2004] Jorge, A. M., Rodrigues, A. M., Vilar, H., Henriques,

P. R., and Lopes, S. (2004). Construção e exploração de uma base de dados

prosopográfica normalizada do clero catedraĺıcio português. In Sistemas

Informáticos para Análise de Dados Demográficos (SIA2D’04), Cadernos

NEPS, pages 49–67, Guimarães, Portugal.

[Karsai et al., 2009] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B.,

Schneider, M., and Völkel, S. (2009). Design guidelines for domain specific

languages. In Rossi, M., Sprinkle, J., Gray, J., and Tolvanen, J.-P., editors,

Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling

(DSM’09), pages 7–13.

[Kejriwal and Bedekar, 2015] Kejriwal, A. A. and Bedekar, M. (2015). Mo-

bidsl - a domain specific langauge for mobile web applications: develop-

ing applications for mobile platform without web programming. In Stef-

fen Fries, Siemens AG, C. T. and Freire, M., editors, The Tenth Interna-

tional Conference on Internet and Web Applications and Services, ICIW

2015, Brussels, Belgium. IARIA.

[Kersten et al., 2017] Kersten, T. P., Tschirschwitz, F., and Deggim, S.

(2017). Development of a Virtual Museum Including a 4d Presentation

of Building History in Virtual Reality. ISPRS - International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences,

pages 361–367.

[Kogalovsky, 2012] Kogalovsky, M. R. (2012). Ontology-based data access

systems. Programming and Computer Software, 38(4):167–182.

[Kontchakov et al., 2014] Kontchakov, R., Rezk, M., Rodŕıguez-Muro, M.,

Xiao, G., and Zakharyaschev, M. (2014). Answering sparql queries over

databases under owl 2 ql entailment regime. In Proceedings of the 13th

International Semantic Web Conference - Part I, ISWC ’14, pages 552–

567, New York, NY, USA. Springer-Verlag New York, Inc.

[Kosar et al., 2008] Kosar, T., López, P. E. M., Barrientos, P. A., and

Mernik, M. (2008). A preliminary study on various implementation ap-

BIBLIOGRAPHY 233

proaches of domain-specific language. Information and Software Technol-

ogy, 50(5):390 – 405.

[Krstićev et al., 2016] Krstićev, D. B., Tesendić, D., Jović, M., and Bajić, Z.

(2016). Dsl for web application developement. In Proceedings of the 6th

International Conference on Information Society and Technology ICIST

2016, pages 174–178, Belgrade, Serbia. Society for Information Systems

and Computer Networks.

[Lagoze and Hunter, 2001] Lagoze, C. and Hunter, J. (2001). The abc on-

tology and model. In Proc. of the Int. Conf. on Dublin Core and Meta-

data Applications, pages 160–176. National Institute of Informatics, Tokyo,

Japan.

[Lenzerini, 2011] Lenzerini, M. (2011). Ontology-based data management.

In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management, CIKM ’11, pages 5–6, New York, NY, USA.

ACM.

[Librelotto et al., 2008a] Librelotto, G. R., Freitas, L. O., Gasse, J. B.,

Copetti, M., Turchetti, R. C., da Silva, F. L., and Augustin, I. (2008a).

Uma ferramenta para o processamento da representação do domı́nio de

atividades médicas. Hı́fen, pages 25–32.

[Librelotto et al., 2008b] Librelotto, G. R., Gassen, J. B., Freitas, L. O.,

Silveira, M. C., Silva, F. L., Augustin, I., and Henriques, P. (2008b). Uma

ontologia aplicada a um ambiente pervasivo hospitalar. In: 8 Conferência

da Associação Portuguesa de Sistemas de Informação, pages 34–34.

[Lomas and Oblinger, 2006] Lomas, C. and Oblinger, D. G. (2006). Students

Practices and Their Impact on Learning Spaces. EDUCAUSE. Editor -

Diana G. Oblinger.

[Madsen and Madsen, 2015] Madsen, J. B. and Madsen, C. B. (2015). Hand-

held visual representation of a castle chapel ruin. J. Comput. Cult. Herit.,

9(1):6:1–6:18.

234 BIBLIOGRAPHY

[Martinez-Cruz et al., 2012] Martinez-Cruz, C., Blanco, I. J., and Vila,

M. A. (2012). Ontologies versus Relational Databases: Are they so di↵er-

ent? A comparison. Artif. Intell. Rev., 38(4):271–290.

[Martini et al., 2015] Martini, R., Guimarães, M., Librelotto, G., and Hen-

riques, P. (2015). Storing archival emigration documents to create virtual

exhibition rooms. In Rocha, A., Correia, A. M., Costanzo, S., and Reis,

L. P., editors, New Contributions in Information Systems and Technolo-

gies, volume 353 of Advances in Intelligent Systems and Computing, pages

403–409. Springer International Publishing.

[Martini et al., 2016a] Martini, R. G., Araújo, C., Almeida, J. J., and Hen-

riques, P. R. (2016a). OntoMP, An Ontology to Build the Museum of the

Person. In Rocha, Á., Correia, A. M., Adeli, H., Reis, L. P., and Men-

donça Teixeira, M., editors, New Advances in Information Systems and

Technologies, pages 653–661, Cham. Springer International Publishing.

[Martini et al., 2016b] Martini, R. G., Araújo, C., Librelotto, G. R., and

Henriques, P. R. (2016b). A Reduced CRM-Compatible Form Ontology

for the Virtual Emigration Museum. In Rocha, Á., Correia, M. A., Adeli,

H., Reis, P. L., and Teixeira, M. M., editors, New Advances in Information

Systems and Technologies, pages 401–410. Springer International Publish-

ing, Cham.

[Martini et al., 2018] Martini, R. G., Araújo, C., Henriques, P. R., and

Pereira, M. J. V. (2018). Trends and Advances in Information Systems and

Technologies, chapter CaVa: An Example of the Automatic Generation of

Virtual Learning Spaces. Springer International Publishing, Switzerland.

[Martini et al., 2017] Martini, R. G., Guimarães, M., Librelotto, G. R., and

Henriques, P. R. (2017). Creating Virtual Exhibition Rooms from Emi-

gration Digital Archives. Univers. Access Inf. Soc., 16(4):823–833.

[Martini and Henriques, 2017a] Martini, R. G. and Henriques, P. R. (2017a).

Automatic Generation of Virtual Learning Spaces Driven by CaVaDSL: An

Experience Report. SIGPLAN Not., 52(12):233–245.

BIBLIOGRAPHY 235

[Martini and Henriques, 2017b] Martini, R. G. and Henriques, P. R. (2017b).

Automatic Generation of Virtual Learning Spaces Driven by CaVaDSL: An

Experience Report. In Proceedings of the 16th ACM SIGPLAN Interna-

tional Conference on Generative Programming: Concepts and Experiences,

GPCE 2017, pages 233–245, New York, NY, USA. ACM.

[Martini et al., 2016c] Martini, R. G., Librelotto, G. R., and Henriques,

P. R. (2016c). Formal Description and Automatic Generation of Learn-

ing Spaces Based on Ontologies. Procedia Computer Science, 96:235 –

244. Knowledge-Based and Intelligent Information & Engineering Sys-

tems: Proceedings of the 20th International Conference KES-2016.

[Masolo et al., 2003] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and

Oltramari, A. (2003). WonderWeb deliverable D18 ontology library (fi-

nal). Technical report, IST Project 2001-33052 WonderWeb: Ontology

Infrastructure for the Semantic Web.

[Matsuzono, 2004] Matsuzono, M. (2004). Museums, intangible cultural her-

itage and the spirit of humanity. ICOM NEWS, 4:13–14.

[MCEECDYA, 2008] MCEECDYA (2008). Melbourne Declaration on Edu-

cational Goals for Young Australians. Ministerial Council for Education,

Early Childhood Development and Youth A↵airs.

[McGuinness and Harmelen, 2004] McGuinness, D. L. and Harmelen, F. V.

(2004). Owl web ontology language overview.

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A. M. (2005).

When and how to develop domain-specific languages. ACM Comput. Surv.,

37(4):316–344.

[Moore et al., 2011] Moore, J. L., Dickson-Deane, C., and Galyen, K. (2011).

e-learning, online learning, and distance learning environments: Are they

the same? The Internet and Higher Education, 14(2):129–135.

[Nguyen et al., 2010] Nguyen, P. H., Kaneiwa, K., and Nguyen, M.-Q.

(2010). Ontology inferencing rules and operations in conceptual structure

236 BIBLIOGRAPHY

theory. In Proceedings of Australasian Ontology Workshop (AOW 2010),

Australia, pages 61–70.

[Nisheva-Pavlova et al., 2008] Nisheva-Pavlova, M. M., Pavlov, P. I., and

Devreni-Koutsouki, A. S. (2008). Ontology-based access to digitized cul-

tural heritage and archival collections.

[Noy and Mcguinness, 2001] Noy, N. F. and Mcguinness, D. L. (2001). On-

tology development 101: A guide to creating your first ontology. Technical

report.

[Oldman and Labs, 2014] Oldman, D. and Labs, C. (2014). The cidoc con-

ceptual reference model (cidoc-crm): Primer. International Council of

Museums (ICOM), 1.

[Oliveira, 2009] Oliveira, N. (2009). Improving program comprehension tools

for domain specific languages. Master’s thesis, Universidade do Minho,

Braga, Portugal.

[Oliveira et al., 2009] Oliveira, N., Pereira, M. J. V., Henriques, P. R., and

da Cruz, D. (2009). Domain-Specific Languages - A Theoretical Survey. In

Proceedings of the 3rd Compilers, Programming Languages, Related Tech-

nologies and Applications (CoRTA’2009), pages 35–46.

[Parr, 2013] Parr, T. (2013). The Definitive ANTLR 4 Reference. Pragmatic

Bookshelf, 2nd edition.

[Piccoli et al., 2001] Piccoli, G., Ahmad, R., and Ives, B. (2001). Web-based

virtual learning environments: A research framekwork and a preliminary

assessment of e↵ectiveness in basic it skills training. MIS Q., 25(4):401–

426.

[Poggi et al., 2008] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G.,

Lenzerini, M., and Rosati, R. (2008). Linking data to ontologies. In

Spaccapietra, S., editor, Journal on Data Semantics X, pages 133–173.

Springer-Verlag, Berlin, Heidelberg.

BIBLIOGRAPHY 237

[Rainie et al., 2010] Rainie, H., Anderson, J., and Fox, S. (2010). Challenges

and Opportunities: The Future of the Internet. The Future of the Internet.

Cambria Press.

[Ravanello, 2018] Ravanello, R. B. (2018). Narrativa para bens culturais:

tecnologias e aplicabilidades da fotografia digital expandida em museus vir-

tuais. PhD thesis, Universidade do Minho, Campus Gualtar, Braga, Por-

tugal.

[Ribeiro, 1986] Ribeiro, F. (1986). Emigração portuguesa: algumas carac-

teŕısticas dominantes dos movimentos no peŕıodo de 1950 a 1984. Série

Migrações: Sociologia. Secretaria de Estado das Comunidades Portugue-

sas, Centro de Estudos.

[Rodŕıguez-Muro et al., 2012] Rodŕıguez-Muro, M., Hardi, J., and Cal-

vanese, D. (2012). Quest: E�cient sparql-to-sql for rdf and owl. In Pro-

ceedings of the 2012th International Conference on Posters & Demonstra-

tions Track - Volume 914, ISWC-PD’12, pages 53–56, Aachen, Germany,

Germany. CEUR-WS.org.

[Rodŕıguez-Muro et al., 2013] Rodŕıguez-Muro, M., Kontchakov, R., and

Zakharyaschev, M. (2013). Ontology-Based Data Access: Ontop of

Databases, pages 558–573. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Ruge, 2008] Ruge, A. (2008). Museum professions - a european frame of

reference. ICOM NEWS, pages 1–39.

[Sacher et al., 2013] Sacher, D., Biella, D., and Luther, W. (2013). Towards

a versatile metadata exchange format for digital museum collections. In

Digital Heritage International Congress (DigitalHeritage), 2013, volume 2,

pages 129–136.

[Serra and Girardi, 2011] Serra, I. and Girardi, R. (2011). A process for

extracting non-taxonomic relationships of ontologies from text. Intelligent

Information Management, 3(4):119–124.

238 BIBLIOGRAPHY

[Sharma et al., 2015] Sharma, S., Stigall, J., and Rajeev, S. (2015). Game-

theme based instructional module for teaching object oriented program-

ming. In 2015 International Conference on Computational Science and

Computational Intelligence (CSCI), pages 252–257.

[Simões and Almeida, 2003] Simões, A. and Almeida, J. J. (2003). Histórias

de Vida + Processamento Estrutural = Museu da Pessoa. In XATA 2003

— XML: Aplicações e Tecnologias Associadas, page 16, Braga, Portugal.

UM.

[Smith et al., 2004] Smith, M. K., Welty, C., and McGuinness, D. M. (2004).

Owl web ontology language guide.

[Stefano Ceri and Matera, 2001] Stefano Ceri, P. F. and Matera, M. (2001).

Webml application frameworks: a conceptual tool for enhancing design

reuse. In WWW10 Workshop Web Engineering, Hong Kong.

[Stenou and Unesco, 2002] Stenou, K. and Unesco (2002). Universal decla-

ration on cultural diversity : a vision ; a conceptual platform ; a pool of

ideas for implementation ; a new paradigm ; a document of the World Sum-

mit on Sustainable Development, Johannesburg, 26 August - 4 September

2002. Cultural diversity series. Unesco.

[Stibe and Bicevskis, 2009] Stibe, A. and Bicevskis, J. (2009). Web site mod-

eling and prototyping based on a domain-specific language. In Computer

Science and Information Technologies Vol. 751, pages 7–21, Riga, Latvia.

Scientific Paper, University of Latvia.

[Studer et al., 1998] Studer, R., Benjamins, V. R., and Fensel, D. (1998).

Knowledge engineering: Principles and methods. Data Knowl. Eng., pages

161–197.

[Tylor, 1871] Tylor, E. (1871). Primitive Culture: Researches Into the Devel-

opment of Mythology, Philosophy, Religion, Art, and Custom. Number vol.

1 in Primitive Culture: Researches Into the Development of Mythology,

Philosophy, Religion, Art, and Custom. J. Murray.

BIBLIOGRAPHY 239

[Ullman, 2013] Ullman, L. (2013). The Yii Book: Developing Web Applica-

tions Using the Yii PHP Framework. Self-published.

[UNESCO, 1989] UNESCO (1989). Draft Medium Term Plan 1990 1995.

United Nations Educational, Scientific and Cultural Organization.

[UNESCO, 1997] UNESCO (1997). New information technologies: a key for

adult learning? Matthew Partidge, Hamburg.

[UNESCO, 2013] UNESCO (2013). Draft Medium Term Strategy 2014 2021.

United Nations Educational, Scientific and Cultural Organization.

[Uschold and Gruninger, 1996] Uschold, M. and Gruninger, M. (1996). On-

tologies: Principles, methods and applications. Knowledge Engineering

Review, pages 93–136.

[Uschold and Jasper, 1999] Uschold, M. and Jasper, R. (1999). A framework

for understanding and classifying ontology applications.

[Visser, 2008] Visser, E. (2008). Generative and transformational techniques

in software engineering ii. chapter WebDSL: A Case Study in Domain-

Specific Language Engineering, pages 291–373. Springer-Verlag, Berlin,

Heidelberg.

[Waterton and Watson, 2013] Waterton, E. and Watson, S. (2013). HER-

ITAGE AND COMMUNITY ENGAGEMENT: Collaboration or Contes-

tation? Taylor & Francis.

[Witten et al., 2009] Witten, I., Bainbridge, D., and Nichols, D. (2009). How

to Build a Digital Library. Morgan Kaufmann series in multimedia infor-

mation and systems. Elsevier Science.

	Página 1
	Página 2
	Página 3
	Página 4
	_tese_ULTIMA_VERSAO_COMPLETA_CAPA_NOVA.pdf
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Research Hypothesis
	Document Organization

	I State of the Art
	Cultural Heritage
	Definition of Cultural Heritage
	Types of Cultural Heritage
	Importance of Preserving Cultural Heritage
	Ways of Preserving Cultural Heritage

	Summary

	Ontologies
	Ontology Representation
	Components of an Ontology
	Advantages of Using Ontologies
	Ontologies for Cultural Heritage
	CIDOC Conceptual Reference Model Ontology

	Summary

	Domain-Specific Languages (DSLs)
	Classifying DSLs
	Life Cycle of DSLs
	Phase One: decision
	Phase Two: analysis
	Phase Three: design
	Phase Four: implementation
	Phase Five: deployment

	DSL Design Guidelines
	Advantages and Disadvantages of DSLs
	Advantages
	Disadvantages

	DSLs to generate web applications
	Relating ontologies and DSLs
	Summary

	Learning Spaces
	Virtual Learning Spaces
	Comparison between Traditional and Virtual Learning Spaces
	Advantages and Disadvantages of Traditional and Virtual Learning Spaces

	Related Projects – Generation of Virtual Learning Spaces
	Summary

	II CaVa
	CaVa – Proposal
	The architecture
	Components of the architecture

	Ontology
	Module A - CaVasettler
	CaVaDSL– Learning Space Specification
	CaVaDSL Syntax

	Module B - CaVaprocessor
	CaVagen

	Module C - CaVarender

	III Case Studies
	Case Study 1 – Emigration Documents belonging to Fafe's Archive
	The structure of the emigration documents
	bdME, a Database to store the emigration documents
	Conceptual Model
	Logical Model
	Physical Model

	SGPE, a DIS to populate the bdME Database
	Problems found
	Summary

	OntoME, an ontology for the emigration domain
	Bridging the gap between bdME and OntoME
	bdME data and OntoME schema
	bdME2OntoME Mapping

	A CaVaDSL specification for the Emigration virtual LS
	CaVagen applied to the automatic generation of the Emigration virtual LS
	Rendering the final Emigration virtual LS with CaVarender
	Summary

	Case Study 2 – The prosopographical repository of the Fasti Ecclesiae Portugaliae project (Clero Catedralicio)
	bdFasti, the Fasti Ecclesiae Portugaliae Project Database
	OntoFasti, an ontology for the Fasti Ecclesiae Portugaliae Project
	Mapping between OntoFasti and bdFasti
	A CaVaDSL specification for the Fasti Ecclesiae Portugaliae virtual LS
	CaVagen applied to the automatic generation of the Fasti Ecclesiae Portugaliae virtual LS
	Summary

	Case Study 3 – Collection of life stories of MP
	The Museum of the Person Assets
	OntoMP, an ontology for the Museum of the Person
	Data Extraction and Ontology Population (XML2RDF)
	A CaVaDSL specification for the Museum of the Person
	CaVagen applied to the automatic generation of the Museum of the Person virtual LS
	Rendering the final Museum of the Person virtual LS with CaVarender
	Summary

	Conclusion
	Revisiting objectives and results
	Main Contributions and Thesis
	Topics of Future Work

	Appendices
	Generated and used grammars
	CaVagrammar
	OBDA Ontop grammar (cavaSPARQL)

	Passport Application Form Data
	Logical and Physical Model of bdME
	Physical Model of bdFasti
	Bibliography

